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Abstract

We show the global approximate controllability of the Boussinesq system
with viscosity and diffusion in a planar periodic channel by using only a
temperature control supported in a thin strip. At the walls, a slip boundary
condition is chosen for the fluid and the normal derivative of the temperature
is assumed to vanish. This contributes a first global controllability result of
such type for the Boussinesq system in the presence of non-periodic boundary
conditions. We resort to a small-time scaling argument to control the vorticity
through a large initial temperature. Moreover, relying on the special choice
of the domain, we employ J.-M. Coron’s return method in order to steer the
temperature without significantly impacting the vorticity.
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1 Introduction

The global (large data) approximate controllability of the Boussinesq system by
using solely a localized temperature control was recently tackled in [24] when the
domain is the 2D flat torus. This demonstrates for the periodic setting that, given
any initial configuration, the system can approximately reach any target in arbitrary
time if one acts with an appropriate physically localized force on the temperature.
However, the existing literature on the controllability of the Boussinesq system is
in large parts concerned with domains that have boundaries, and for these cases
the question of global controllability only through the temperature has remained
unanswered. The present article provides now the existence of at least one setting
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with boundaries for which global controllability properties can be achieved by
using merely a localized temperature control. More specifically, we prove the
global approximate controllability of the Boussinesq system in a straight thermally
insulated periodic channel with a slip boundary condition for the fluid, and driven
by an interior temperature control supported in a strip of nonzero width. While
being far from general, this setup is not chosen just for sake of simplicity; see
also Remark 1.4. Overall, the main challenges of the considered controllability
problem are as follows: 1) the control can only act on the temperature equation; 2)
the control should be localized; 3) initial and target states can be far away in the
state space; 4) the temperature enters the momentum equation only in the direction
of gravity; 5) the control mechanism has to be designed in accordance with the
boundary conditions. Our approach rests on a scaling argument to control the
vorticity trough the initial temperature. Furthermore, we employ the return method
(cf. [6, Part 2, Chapter 6]) for steering the temperature. From the viewpoint of
applications, the Boussinesq system can be relevant, e.g., to the study of geophysical
phenomena, Rayleigh-Bénard convection, heating, and ventilation (cf. [1, 14]).

We consider viscous incompressible Newtonian flows under Boussinesq heat
effects in the channel 𝒞 ≔ (−1, 1) × T, where T ≔ R/2𝜋Z. The fluid is assumed
to slip without friction along the solid boundary Γ ≔ 𝜕𝒞 = {−1, 1} × T, while
for the temperature we prescribe the zero Neumann boundary condition at Γ.
To influence the dynamics, only external heating/cooling, realized by an interior
control 𝜂 : ω × (0, 𝑇) −→ R, can be applied in a control zone of the form

ω ≔ [−1, 1] × [𝑎, 𝑏], 0 ≤ 𝑎 < 𝑏 < 2𝜋.

The velocity 𝒖 : 𝒞 × [0, 𝑇] −→ R2, temperature 𝜃 : 𝒞 × [0, 𝑇] −→ R, and exerted
pressure 𝑝 : 𝒞 × [0, 𝑇] −→ R are governed by the controlled Boussinesq system

𝜕𝑡𝒖 − 𝜈Δ𝒖 + (𝒖 · ∇) 𝒖 + ∇𝑝 = 𝜃𝓰 +𝚽, ∇ · 𝒖 = 0,
𝜕𝑡𝜃 − 𝜏Δ𝜃 + (𝒖 · ∇)𝜃 = Iω𝜂 + 𝜓,

𝒖 |Γ · 𝒏 = 0, (∇ ∧ 𝒖) |Γ = 0, 𝜕𝒏𝜃 |Γ = 0, 𝒖(·, 0) = 𝒖0, 𝜃 (·, 0) = 𝜃0

(1.1)

where 𝒏 is the outward unit normal at Γ, the constant vector 𝓰 ≔ [0, 1]⊤ refers to
gravity, (𝒖0, 𝜃0) are the initial states, and the external forces (𝚽, 𝜓) are fixed. The
evolution equations in (1.1) consist of a Navier–Stokes system for the fluid, where
temperature enters as a force in the direction of gravity, and of a convection diffusion
equation, with the fluid velocity as drift field, for the temperature; as discussed in
Section 2, the problem (1.1) will be globally wellposed for the considered classes
of data. The boundary condition for 𝒖, which allows the fluid to slip at the flat
boundary Γ, is sometimes called the Lions free boundary condition (cf. [18, Page
129], [26, Remark 2.4], and [8, Section 1.5.3]). It can also be seen as a limiting
case of the Navier slip-with-friction boundary condition dating back to [20]. As
made precise below in Theorem 1.1, the approximate controllability of (1.1) in
the present context essentially means that, for any 𝜀 > 0, initial configuration
(𝒖0, 𝜃0), target (𝒖𝑇 , 𝜃𝑇 ), and suitable forces (𝚽, 𝜓), one can choose the control 𝜂
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in (1.1) such that ∥(𝒖, 𝜃) (·, 𝑇) − (𝒖𝑇 , 𝜃𝑇 )∥X < 𝜀, where X will be a product space
of Sobolev type.

When controllability properties are known for a system, it is natural to ask
whether, or to which extend, such properties remain true if one limits the actions
of the controls to a reduced number of components. For the 3D Navier–Stokes
equations with the no-slip boundary condition, the local null controllability with
controls having two vanishing components has been shown in [7]; other results
in this direction, including 2D domains, are cited therein. Further, see [16] for
local exact controllability results under the assumption of (nonlinear) Navier slip
boundary conditions and with controls having one vanishing component. However,
there are currently no such global controllability results for the Navier–Stokes
system with distributed or boundary controls, also not if slip or periodic boundary
conditions are employed. And even when allowing physically localized controls to
act directly in all components, the global approximate controllability of the 2D
and 3D Navier–Stokes equations with the no-slip boundary condition is an open
problem posed by J.-L. Lions (see [8, 9] and the references therein). If one admits
everywhere-supported controls, but localized in frequency, the global approximate
controllability (and also the Lagrangian controllability) with controls vanishing
in two components has been obtained in [21] for the Navier–Stokes system in
the 3D flat torus. Concerning the Boussinesq system driven only by a physically
localized temperature control, the local null controllability, and also the local exact
controllability to trajectories, were demonstrated first in [10]. An argument that
requires less assumptions on the domain, but further limits the choice of reachable
trajectories, is given by [3], and the case of (nonlinear) Navier slip-with-friction
boundary conditions for the velocity, and the Neumann boundary condition for
the temperature, is considered in [19]. Local exact controllability results of this
type could be combined with our main theorem in order to conclude the global
exact controllability to the zero state, or to suitable trajectories, by using only a
physically localized temperature control (cf. Remark 1.3). Finally, let us mention
that, when the controls are allowed to act both in the velocity and temperature
equations, the local exact controllability to zero, or to trajectories, has been studied,
e.g., in [13, 15], and global controllability results are obtained in [4, 11] using the
return method.

1.1 Main result

Let H consist of all 𝑓 ∈ L2(𝒞;R) with
∫
𝒞
𝑓 (𝒙) d𝒙 = 0, and write ∇∧ 𝒇 = 𝜕1 𝑓2−𝜕2 𝑓1

for the “curl” of 𝒇 = [ 𝑓1, 𝑓2]⊤. The notation ∥ · ∥ refers either to ∥ · ∥L2 (𝒞;R) or
to ∥ · ∥L2 (𝒞;R2 ) . Moreover, we define the spaces

H ≔

{
𝒇 ∈ L2(𝒞;R2)

��� ∇ · 𝒇 = 0 in 𝒞, 𝒇 · 𝒏 = 0 at Γ, 𝒇 ·𝓰 ∈ H
}
,

H𝑚0 ≔ H𝑚(𝒞;R) ∩ H1
0(𝒞;R), 𝑚 ≥ 1,

H𝑚N ≔

{
𝑓 ∈ H𝑚(𝒞;R) ∩ H

��� 𝜕𝒏 𝑓 = 0 at Γ
}
, 𝑚 ≥ 2,
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endowed respectively with ∥ · ∥ and ∥ · ∥𝑚 ≔ (∑ |𝜶 | ≤𝑚 ∥𝜕𝜶 · ∥2)1/2. Let us also
recall the elliptic regularity estimate for div-curl problems (cf. [27, Apendix I])

∥ 𝒇 ∥𝑘 ≲ ∥∇ · 𝒇 ∥𝑘−1 + ∥∇ ∧ 𝒇 ∥𝑘−1 + ∥ 𝒇 · 𝒏∥H𝑘−1/2 (Γ;R) + |
∫
𝒞

𝒇 (𝒙) ·𝓰 d𝒙 |, (1.2)

where 𝑎 ≲ 𝑏 means 𝑎 ≤ 𝐶𝑏 and 𝐶 > 0 shall always refer to an absolute constant.
The last term on the right-hand side in (1.2) appears since 𝒞 is doubly-connected
and its de Rham first cohomology space is spanned by 𝓰 = [0, 1]⊤, which obeys

∇ ∧𝓰 = 0, ∇ ·𝓰 = 0, 𝓰|Γ · 𝒏 = 0.

Throughout, we assume that the Lebesgue measure is normalized so that ∫𝒞 d𝒙 = 1.
Theorem 1.1 (Main result). The system (1.1) is globally approximately controllable
by using only a temperature control. That is, for arbitrary

• viscosity 𝜈 > 0, diffusivity 𝜏 > 0, control time 𝑇 > 0, accuracy 𝜀 > 0,

• states (𝒖0, 𝜃0) ∈ H × H and (𝒖𝑇 , 𝜃𝑇 ) ∈ H × H2
N with ∇ ∧ 𝒖𝑇 ∈ H1

0,

• forces (𝚽, 𝜓) ∈ H1((0, 𝑇); H × H) ∩ L2((0, 𝑇); H1(𝒞;R2+1)),
there exists a control 𝜂 ∈ C∞(𝒞 × [0, 𝑇];R) with supp(𝜂) ⊂ ω × (0, 𝑇) such that
the unique solution (𝒖, 𝜃) to (1.1) satisfies

∥𝒖(·, 𝑇) − 𝒖𝑇 ∥2 + ∥𝜃 (·, 𝑇) − 𝜃𝑇 ∥2 < 𝜀.

Remark 1.2. Following the lines of [27], if (𝒖0, 𝜃0) ∈ H × H2
N with ∇ ∧ 𝒖0 ∈ H1

0
in Theorem 1.1, then (𝒖, 𝜃) ∈ L∞((0, 𝑇); H2(𝒞;R2+1)) ∩ L2((0, 𝑇); H3(𝒞;R2+1)).
Further, one can then show that (𝒖, 𝜃) ∈ C0( [0, 𝑇]; H2(𝒞;R2+1)) by using the
abstract argument from [25, Theorem 3.1].
Remark 1.3. Due to the parabolic smoothing effects for Leray-Hopf type solutions,
as detailed in [4, Lemma 2.1] (see also [8, Proof of Lemma 9] or [17, Appendix
A]), one can use Theorem 1.1 without external forces to obtain global exact
controllability results with the help of known local exact ones, e.g., from [19]; we
refer to [8, Section 2.6 and Section 5] for the details of such an argument. By
density, Theorem 1.1 likewise provides approximate controllability in L2 × L2 or
H1 × H1; controllability in higher norms could also be achieved for suitable forces.
Remark 1.4. Regarding other boundary conditions, e.g., modeling friction at the
walls, difficulties arise in the context of Theorem 2.6, where viscous boundary
layers would enter the proof. For the Navier–Stokes system with the Navier slip-
with-friction condition, it was shown in [8] how these boundary layers can be
dissipated sufficiently; this analysis has been extended in [4] to the Boussinesq
system in the presence of both velocity and temperature controls. For the no-slip
boundary condition, and even with controls in both the velocity and the temperature
equations, the question of global approximate controllability parallels the open
problem due to J.-L. Lions mentioned in the introduction. The shape of the domain
is also crucially used here, as it facilitates a suitable return method trajectory for
(1.1) controlled through the temperature (cf. Remark 2.3).
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2 Proof of the main result

The proof of Theorem 1.1 involves two key ingredients. 1) The approximate
controllability of the vorticity in a short time via a large control acting through the
initial condition for the temperature; see Theorem 2.1 in Section 2.2. 2) A version
of the return method, implemented in Section 2.3 and culminating in Theorem 2.6.
All pieces of the argument are finally combined in Section 2.4.

2.1 Remarks on the Boussinesq system

As (1.1) accounts for viscosity and diffusion, its global wellposedness and regularity
theories parallel those for the 2D Navier–Stokes system; see, e.g., [12, 26, 27], and
also [4] for further references and a description of (controlled) Leray-Hopf weak
solutions.

Let us assume (𝒖0, 𝜃0) ∈ H × H2
N with ∇ ∧ 𝒖0 ∈ H1

0 . The vorticity formulation
of (1.1) is obtained by acting with “∇ ∧ ” on the velocity equation; i.e.,

𝜕𝑡𝑤 − 𝜈Δ𝑤 + (𝒖 · ∇)𝑤 = 𝜕1𝜃 + 𝜑, 𝑤(·, 0) = 𝑤0,

𝜕𝑡𝜃 − 𝜏Δ𝜃 + (𝒖 · ∇)𝜃 = Iω𝜂 + 𝜓, 𝜃 (·, 0) = 𝜃0,

∇ ∧ 𝒖 = 𝑤, ∇ · 𝒖 = 0,
∫
𝒞

𝒖(𝒙, 𝑡) ·𝓰 d𝒙 =

∫ 𝑡

0

∫
𝒞

𝜃 (𝒙, 𝑠) d𝒙d𝑠,

𝒖 |Γ · 𝒏 = 0, (∇ ∧ 𝒖) |Γ = 0, 𝜕𝒏𝜃 |Γ = 0,

(2.1)

where 𝑤0 = ∇ ∧ 𝒖0, 𝜑 = ∇ ∧𝚽, and 𝜓 are given as in Theorem 1.1. If Iω𝜂(·, 𝑡)
is average-free for 0 ≤ 𝑡 ≤ 𝑇 < +∞, then also 𝜃 (·, 𝑡). Moreover, due to (1.2),
the average of 𝒖(·, 𝑡) ·𝓰 must be specified for all 𝑡. Further, assuming Iω𝜂 to be
sufficiently regular, we denote by

𝑆(𝑤0, 𝜃0, 𝜑, Iω𝜂 + 𝜓) ≔ (𝑤, 𝜃) ∈ C0( [0, 𝑇]; H1
0 × H2

N) ∩ L2((0, 𝑇); H2
0 × H3

N)

the respective solution to (2.1), and by 𝑆𝑡 = (𝑆1
𝑡 , 𝑆

2
𝑡 ) its restriction at time 𝑡; i.e.,

𝑆1
𝑡 (𝑤0, 𝜃0, 𝜑, Iω𝜂 + 𝜓) ≔ 𝑤(·, 𝑡), 𝑆2

𝑡 (𝑤0, 𝜃0, 𝜑, Iω𝜂 + 𝜓) ≔ 𝜃 (·, 𝑡). (2.2)

2.2 Steering the vorticity through the initial temperature

The next theorem allows to steer the vorticity in a short time by means of a large
initial temperature. Our proof develops the ansatz which has been introduced in
[24] for the torus case (see also [2]). Due to boundary effects, we can only reach
approximately the vorticity states of the form 𝑤0 − 𝜕1𝜉, for a sufficiently regular
profile 𝜉 which satisfies 𝜕1𝜉 |Γ = 0 and the less intuitive condition 𝜕111𝜉 |Γ = 0.

Theorem 2.1. Let 𝑇 > 0, 𝜉 ∈ C∞(𝒞;R) ∩ H2
N with 𝜕111𝜉 |Γ = 0, (𝑤0, 𝜃0) ∈

H2
0 × H2

N, forces 𝜑 = ∇ ∧𝚽 and 𝜓 given by Theorem 1.1, and 𝜀 > 0. There exists
a small 𝛿0 > 0 such that for all 𝛿 ∈ (0, 𝛿0) one has

∥𝑆1
𝛿 (𝑤0, 𝜃0 − 𝛿−1𝜉, 𝜑, 𝜓) − (𝑤0 − 𝜕1𝜉)∥1 < 𝜀. (2.3)
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Proof. Thanks to the assumptions on 𝜉, it follows for any 𝛿 ∈ (0, 1) that the pair

(𝑤𝛿 , 𝜃 𝛿) ≔ 𝑆𝛿 (𝑤0, 𝜃0 − 𝛿−1𝜉, 𝜑, 𝜓) + (0, 𝛿−1𝜉) (2.4)

is well-defined and solves

𝜕𝑡𝑤𝛿 − 𝜈Δ𝑤𝛿 + (𝒖𝛿 · ∇) 𝑤𝛿 = 𝜕1(𝜃 𝛿 − 𝛿−1𝜉) + 𝜑, 𝑤𝛿 (·, 0) = 𝑤0

𝜕𝑡𝜃 𝛿 − 𝜏Δ(𝜃 𝛿 − 𝛿−1𝜉) + (𝒖𝛿 · ∇) (𝜃 𝛿 − 𝛿−1𝜉) = 𝜓, 𝜃 𝛿 (·, 0) = 𝜃0,

∇ ∧ 𝒖𝛿 = 𝑤𝛿 , ∇ · 𝒖𝛿 = 0,
∫
𝒞

𝒖𝛿 (𝒙, 𝑡) ·𝓰 d𝒙 = 0,

𝒖𝛿 |Γ · 𝒏 = 0, 𝑤𝛿 |Γ = 0, 𝜕𝒏𝜃 𝛿 |Γ = 0.

(2.5)

In particular, as mentioned in Section 2.1, the temperature 𝜃 𝛿 (·, 𝑡) is average-free
for all 𝑡 ∈ [0, 𝛿]; thus, by (2.4), in (2.5) one actually has∫

𝒞

𝒖𝛿 (𝒙, 𝑡) ·𝓰 d𝒙 = 0 =

∫ 𝑡

0

∫
𝒞

𝜃 𝛿 (𝒙, 𝑠) d𝒙d𝑠, 𝑡 ∈ [0, 𝛿] .

Step 1. Ansatz. To establish lim𝛿→0 𝑤𝛿 (·, 𝛿) = (𝑤0 − 𝜕1𝜉) in H1
0, the following

ansatz is made such that 𝛿−1𝜕1𝜉, 𝜏𝛿−1Δ𝜉, and 𝛿−1(𝒖𝛿 · ∇)𝜉 are canceled in the
remainder estimates. More precisely, for each 𝛿 ∈ (0, 1) we define the remainders

𝑞 𝛿 (𝒙, 𝑡) ≔ 𝑤𝛿 (𝒙, 𝑡) − 𝑤0(𝒙) + 𝛿−1𝑡𝜕1𝜉 (𝒙),
𝑟 𝛿 (𝒙, 𝑡) ≔ 𝜃 𝛿 (𝒙, 𝑡) − 𝜃0(𝒙) + 𝛿−1𝑡𝜏Δ𝜉 (𝒙) −

(
𝑼𝛿, 𝜉 (𝒙, 𝑡) · ∇

)
𝜉 (𝒙),

(2.6)

where 𝑼𝛿, 𝜉 is uniquely determined as the solution to

∇ ∧𝑼𝛿, 𝜉 (·, 𝑡) = 𝛿−1𝑡

(
𝑤0 −

𝛿−1𝑡𝜕1𝜉

2

)
, ∇ ·𝑼𝛿, 𝜉 = 0,

𝑼𝛿, 𝜉 |Γ · 𝒏 = 0,
∫
𝒞

𝑼𝛿, 𝜉 (𝒙, ·) ·𝓰 d𝒙 = 0.
(2.7)

In view of (2.6), the convergence (2.3) will follow after showing that

lim
𝛿→0

∥𝑞 𝛿 (·, 𝛿)∥1 = 0. (2.8)

To this end, we consider the problems satisfied by 𝑞 𝛿 and 𝑟 𝛿 , which are derived by
taking 𝜕𝑡 in (2.6) and inserting (2.5); namely,

𝜕𝑡𝑞 𝛿 − 𝜈Δ𝑞 𝛿 + (𝑸 𝛿 · ∇)𝑞 𝛿 = 𝜑 + 𝜕1(𝜃 𝛿 − 𝑟 𝛿) + 𝜕1𝑟 𝛿 − 𝜈Δ(𝑞 𝛿 − 𝑤𝛿)
+ ((𝒖𝛿 − 𝑸 𝛿) · ∇) (𝑞 𝛿 − 𝑤𝛿) + (𝑸 𝛿 · ∇) (𝑞 𝛿 − 𝑤𝛿) + ((𝑸 𝛿 − 𝒖𝛿) · ∇)𝑞 𝛿 (2.9)

and

𝜕𝑡𝑟 𝛿 − 𝜏Δ𝑟 𝛿 + (𝑸 𝛿 · ∇)𝑟 𝛿 = 𝜓 − 𝜏Δ(𝑟 𝛿 − 𝜃 𝛿) + (𝑸 𝛿 · ∇) (𝑟 𝛿 − 𝜃 𝛿)
+ ((𝑸 𝛿 − 𝒖𝛿) · ∇)𝑟 𝛿 + ((𝑸 𝛿 − 𝒖𝛿) · ∇) (𝜃 𝛿 − 𝑟 𝛿) + 𝛿−1(𝑸 𝛿 · ∇)𝜉, (2.10)
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where 𝑸 𝛿 is the solution to

∇ ∧ 𝑸 𝛿 = 𝑞 𝛿 , ∇ · 𝑸 𝛿 = 0, 𝑸 𝛿 |Γ · 𝒏 = 0,
∫
𝒞

𝑸 𝛿 (𝒙, ·) ·𝓰 d𝒙 = 0.

By the hypotheses stated in Theorem 2.1, in particular 𝜕1𝜉 |Γ = 𝜕111𝜉 |Γ = 0, and
due to the definitions in (2.6) and (2.7), the initial and boundary values of the
remainders are

𝑞 𝛿 (·, 0) = 0, 𝑟 𝛿 (·, 0) = 0, 𝑞 𝛿 |Γ = 0, 𝜕𝒏𝑟 𝛿 |Γ = 0.

Step 2. Estimates. We utilize (1.2), and the Sobolev embeddings H1(𝒞;R) ⊂
L4(𝒞;R) and H2(𝒞;R) ⊂ L∞(𝒞;R). First, the equation for 𝑞 𝛿 in (2.9) is multi-
plied by 𝑞 𝛿 , and in a second step by −Δ𝑞 𝛿 . Then, we integrate over 𝒞 × (0, 𝑡)
with 𝑡 ∈ [0, 𝛿]. Because 𝒖𝛿 and 𝑸 𝛿 are divergence free, an also due to the known
boundary values of 𝑞 𝛿 , 𝑸 𝛿 , and 𝑟 𝛿 , integration by parts yields

∥𝑞 𝛿 (·, 𝑡)∥2 +
∫ 𝑡

0
∥𝑞 𝛿 (·, 𝑠)∥2

1 d𝑠 ≲
∫ 𝑡

0
∥𝜑(·, 𝑠)∥2 d𝑠 +

∫ 𝑡

0
∥(𝜃 𝛿 − 𝑟 𝛿) (·, 𝑠)∥2

1 d𝑠

+
∫ 𝑡

0
∥(𝑞 𝛿 − 𝑤𝛿) (·, 𝑠)∥2

2 d𝑠 +
∫ 𝑡

0
∥(𝑞 𝛿 − 𝑤𝛿) (·, 𝑠)∥4

1 d𝑠 +
∫ 𝑡

0
∥𝑞 𝛿 (·, 𝑠)∥4 d𝑠

+
∫ 𝑡

0

(
∥𝑞 𝛿 (·, 𝑠)∥2 + ∥𝑟 𝛿 (·, 𝑠)∥2

1

)
d𝑠 ≕ 𝐼1,1 + · · · + 𝐼1,6

and

∥𝑞 𝛿 (·, 𝑡)∥2
1 +

∫ 𝑡

0
∥Δ𝑞 𝛿 (·, 𝑠)∥2 d𝑠

≲ ℓ

∫ 𝑡

0
∥𝑞 𝛿 (·, 𝑠)∥2

2 d𝑠 + ℓ−1
∫ 𝑡

0
∥𝜑(·, 𝑠)∥2 d𝑠 + ℓ−1

∫ 𝑡

0
∥(𝜃 𝛿 − 𝑟 𝛿) (·, 𝑠)∥2

1 d𝑠

+ ℓ−1
∫ 𝑡

0
∥(𝑞 𝛿 − 𝑤𝛿) (·, 𝑠)∥2

2 d𝑠 +
∫ 𝑡

0
∥(𝑞 𝛿 − 𝑤𝛿) (·, 𝑠)∥4

2 d𝑠

+
∫ 𝑡

0
∥𝑞 𝛿 (·, 𝑠)∥2

1 d𝑠 + ℓ−1
∫ 𝑡

0
∥𝑟 𝛿 (·, 𝑠)∥2

1 d𝑠 +
∫ 𝑡

0
∥𝑞 𝛿 (·, 𝑠)∥4

1 d𝑠

≕ 𝐼2,1 + · · · + 𝐼2,8
for any ℓ > 0. Regarding (2.10), similar considerations as above lead to

∥𝑟 𝛿 (·, 𝑡)∥2 +
∫ 𝑡

0
∥𝑟 𝛿 (·, 𝑠)∥2

1 d𝑠

≲
∫ 𝑡

0
∥𝜓(·, 𝑠)∥2 d𝑠 +

∫ 𝑡

0
∥(𝑟 𝛿 − 𝜃 𝛿) (·, 𝑠)∥2

2 d𝑠 +
∫ 𝑡

0
∥(𝑟 𝛿 − 𝜃 𝛿) (·, 𝑠)∥4

1 d𝑠

+
∫ 𝑡

0
∥(𝑞 𝛿 − 𝑤𝛿) (·, 𝑠)∥4

1 d𝑠 +
∫ 𝑡

0
∥𝑟 𝛿 (·, 𝑠)∥4 d𝑠

+ 𝛿−1∥𝜉∥3

∫ 𝑡

0

(
∥𝑟 𝛿 (·, 𝑠)∥2 + ∥𝑞 𝛿 (·, 𝑠)∥2

)
d𝑠

≕ 𝐽1,1 + · · · + 𝐽1,6
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and

∥𝑟 𝛿 (·, 𝑡)∥2
1 +

∫ 𝑡

0
∥𝑟 𝛿 (·, 𝑠)∥2

2 d𝑠

≲ ℓ

∫ 𝑡

0
∥𝑟 𝛿 (·, 𝑠)∥2

2 d𝑠 + ℓ−1
∫ 𝑡

0
∥𝜓(·, 𝑠)∥2 d𝑠

+
∫ 𝑡

0
∥(𝑟 𝛿 − 𝜃 𝛿) (·, 𝑠)∥4

2 d𝑠 + ℓ−1
∫ 𝑡

0
∥(𝑟 𝛿 − 𝜃 𝛿) (·, 𝑠)∥2

2 d𝑠

+
∫ 𝑡

0
∥(𝑞 𝛿 − 𝑤𝛿) (·, 𝑠)∥4

2 d𝑠 +
∫ 𝑡

0
∥𝑟 𝛿 (·, 𝑠)∥4

1 d𝑠

+
∫ 𝑡

0
∥𝑞 𝛿 (·, 𝑠)∥4 d𝑠 + 𝛿−1∥𝜉∥4

∫ 𝑡

0

(
∥𝑟 𝛿 (·, 𝑠)∥2

1 + ∥𝑞 𝛿 (·, 𝑠)∥2
)

d𝑠

≕ 𝐽2,1 + · · · + 𝐽2,8.

All of the previous estimates are combined, while fixing ℓ > 0 sufficiently small
(independently of 𝛿) such that the terms 𝐼2,1 and 𝐽2,1 are absorbed by the resulting
left-hand side; i.e.,

∥𝑞 𝛿 (·, 𝑡)∥2
1 + ∥𝑟 𝛿 (·, 𝑡)∥2

1 + (1 − ℓ)
∫ 𝑡

0

(
∥𝑞 𝛿 (·, 𝑠)∥2

2 + ∥𝑟 𝛿 (·, 𝑠)∥2
2

)
d𝑠

≲
6∑︁
𝑖=1

(𝐼1,𝑖 + 𝐽1,𝑖) +
8∑︁
𝑖=2

(𝐼2,𝑖 + 𝐽2,𝑖),
(2.11)

where we used that

∥ · ∥2
H2 (𝒞;R) ≲ ∥ · ∥2

L2 (𝒞;R) + ∥Δ · ∥2
L2 (𝒞;R) . (2.12)

Moreover, for any 𝑎 ≥ 1 and 𝑙 ∈ N, it follows from (1.2), (2.6), and (2.7) that

∥(𝑞 𝛿 − 𝑤𝛿)∥𝑎L𝑎 ( (0, 𝛿 );H𝑙 ) ≲ 𝛿
(
1 + ∥𝑤0∥𝑎𝑙 + ∥𝜉∥𝑎𝑙+1

)
,

∥(𝑟 𝛿 − 𝜃 𝛿)∥𝑎L𝑎 ( (0, 𝛿 );H𝑙 ) ≲ 𝛿

(
1 + ∥𝑤0∥2𝑎

𝑙−1 + ∥𝜃0∥𝑎𝑙 + ∥𝜉∥2𝑎
𝑙+3

)
,

which implies

∥(𝑞 𝛿 − 𝑤𝛿)∥𝑎L𝑎 ( (0, 𝛿 );H2 ) + ∥(𝑟 𝛿 − 𝜃 𝛿)∥𝑎L𝑎 ( (0, 𝛿 );H3 ) ≲ 𝛿. (2.13)

Because the forces (𝜑, 𝜓) are fixed, it follows with the help of (2.13) that

lim
𝛿→0

( 4∑︁
𝑖=1

(𝐼1,𝑖 + 𝐽1,𝑖) +
5∑︁
𝑖=2

(𝐼2,𝑖 + 𝐽2,𝑖)
)
= 0.

Also, let us emphasize that

𝐽1,6 + 𝐽2,8 ≲
∫ 𝛿

0
𝛼𝛿

(
∥𝑞 𝛿 (·, 𝑠)∥2

1 + ∥𝑟 𝛿 (·, 𝑠)∥2
1

)
d𝑠, 𝛼𝛿 ≔ 𝛿−1 max{1, ∥𝜉∥2

4},
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where ∫ 𝛿0 𝛼𝛿 d𝑠 = max{1, ∥𝜉∥2
4}. Now, the remaining integrals 𝐼1,𝑖 , 𝐼2,𝑘 , 𝐽1,𝑖 , and 𝐽2,𝑘 ,

for 𝑖 > 4, 𝑘 > 5, are good terms for applying Grönwall’s inequality in (2.11), which
then yields the existence of 𝑐𝛿 > 0 with lim𝛿→0 𝑐𝛿 = 0 and such that

∥𝑞 𝛿 (·, 𝑡)∥2
1 + ∥𝑟 𝛿 (·, 𝑡)∥2

1

≤
(
𝑐𝛿 + 𝐶

∫ 𝑡

0

(
∥𝑞 𝛿 (·, 𝑠)∥4

1 + ∥𝑟 𝛿 (·, 𝑠)∥4
1

)
d𝑠

)
exp(𝐶max{1, ∥𝜉∥2

4})

for all 𝑡 ∈ [0, 𝛿]. Subsequently, we rename 𝑐𝛿 exp(𝐶max{1, ∥𝜉∥2
4}) again as 𝑐𝛿

and absorb exp(𝐶max{1, ∥𝜉∥2
4}) in the absolute constant 𝐶 > 0. Then, we define

𝑓 (𝑡) ≔ 𝑐𝛿 + 𝐶
∫ 𝑡

0

(
∥𝑞 𝛿 (·, 𝑠)∥4

1 + ∥𝑟 𝛿 (·, 𝑠)∥4
1

)
d𝑠.

Hence, one has 𝑓 ′/ 𝑓 2 ≤ 𝐶 and thus 𝑓 (𝛿) ≤ 𝑐𝛿 (1 − 𝑐𝛿𝛿𝐶)−1 −→ 0 as 𝛿 −→ 0,
which implies (2.8). □

2.3 Controlling the temperature

We define a constant-in-𝒙 vector field whose integral curves all cross the control
region ω. This construction is similar to [23, 24] and shall provide a return
method type flow (cf. Remark 2.3) with special structure that facilitates the
proof of Theorem 2.6. To begin with, we fix 0 < 𝐻1 < 𝐻2 < 2𝜋 such that
[−1, 1] × [𝐻1, 𝐻2] ⊂ ω, and we further choose a possibly large 𝐾 ∈ N with
𝑙𝐾 ≔ 8𝜋/3𝐾 < 𝐻2 − 𝐻1/3. Then, the channel 𝒞 is covered by the overlapping
rectangles

O𝑖 ≔ (−2, 2) ×
(
3(𝑖 − 1)𝑙𝐾

4
,

3(𝑖 − 1)𝑙𝐾
4

+ 𝑙𝐾
)
, 𝑖 ∈ {1, . . . , 𝐾},

which are vertical translations of the reference rectangle

O ≔ (−2, 2) × (𝐻1 + 𝑙𝐾 , 𝐻1 + 2𝑙𝐾 ) ⊂ ω.

Moreover, a cutoff function 𝜒 ∈ C∞(𝒞; [0, 1]) with supp(𝜒) ⊂ O, and which only
depends on 𝑥2, is given via

𝜒(𝒙) ≔ 𝜒̃(𝑥2 − 𝐻1 − 𝑙𝐾 ), (2.14)

where 𝜒̃ ∈ C∞(T; [0, 1]) is any profile satisfying

supp( 𝜒̃) ⊂ (0, 𝑙𝐾 ), ∀𝑥 ∈ (0, 𝑙𝐾/4) : 𝜒̃(𝑥) + 𝜒̃(𝑥 + 3𝑙𝐾/4) = 1,
𝜒̃(𝑠) = 1 ⇐⇒ 𝑠 ∈ [𝑙𝐾/4, 3𝑙𝐾/4] .

(2.15)

To state the next result, the reference time interval [0, 1] is partitioned equidis-
tantly by

0 < 𝑡0𝑐 < 𝑡1𝑎 < 𝑡1𝑏 < 𝑡
1
𝑐 < 𝑡

2
𝑎 < 𝑡

2
𝑏 < 𝑡

2
𝑐 < · · · < 𝑡𝐾𝑎 < 𝑡𝐾𝑏 < 𝑡𝐾𝑐 < 1. (2.16)
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Theorem 2.2. There exists 𝒚 = [0, 𝑦2]⊤ ∈ C∞
0 ((0, 1);R2), denoting by Y its flow

obtained via dY
d𝑡 (𝒙, 𝑠, 𝑡) = 𝒚(𝑡) and Y (𝒙, 𝑠, 𝑠) = 𝒙, such that one has the properties:

P1) Supported in (𝑡0𝑐, 𝑡𝐾𝑐 ): ∀𝑡 ∈ [0, 𝑡0𝑐] ∪ [𝑡𝐾𝑐 , 1] : 𝒚(𝑡) = 0;

P2) Closed integral curves: ∀𝒙 ∈ 𝒞 : Y (𝒙, 0, 1) = 𝒙;

P3) Stationary visits of O: ∀𝑖 ∈ {1, . . . , 𝐾} : Y (O𝑖 , 0, [𝑡𝑖𝑎, 𝑡𝑖𝑏]) = O.

Proof. The construction from [23, 24] works here as well. Recalling that 𝑡 ≔ 𝑡0𝑐 is
the width of the partition in (2.16), one selects (𝛽𝑖)𝑖∈{1,...,𝐾 } ⊂ C∞

0 ((0, 𝑡);R) such
that O𝑖 +𝓰 ∫ 𝑡0 𝛽𝑖 (𝑠) d𝑠 = O. Then, one defines

𝒚(𝑡) ≔
{

0 if 𝑡 ∈ [0, 𝑡0𝑐] ∪ [𝑡𝐾𝑐 , 1],
𝒉𝑖 (𝑡 − (3𝑖 − 2)𝑡) if 𝑡 ∈ (𝑡𝑖−1

𝑐 , 𝑡𝑖𝑐) for 𝑖 ∈ {1, . . . , 𝐾},

where 𝒉𝑖 (𝑡) = 𝛽𝑖 (𝑡)𝓰 if 𝑡 ∈ [0, 𝑡], 𝒉𝑖 (𝑡) = 0 if 𝑡 ∈ (𝑡, 2𝑡), and 𝒉𝑖 (𝑡) = −𝛽𝑖 (𝑡−2𝑡)𝓰
if 𝑡 ∈ [2𝑡, 3𝑡]. □

Remark 2.3. Any 𝒚 from Theorem 2.4 is a reference velocity in the spirit of
the return method as developed for the incompressible Euler and Navier–Stokes
equations (cf. [6, Part 2, Chapter 6]). Indeed, it holds 𝒚(0) = 𝒚(1) = 0, and the
integral curves of 𝒚 all cross the control zone. Moreover, a special trajectory for a
controlled inviscid Boussinesq system is given by (𝒖, 𝜃) ≔ (𝒚, 𝑦′2𝜒/∫𝒞 𝜒(𝒛) d𝒛),
which solves the controllability problem

𝜕𝑡𝒖 + (𝒖 · ∇)𝒖 + ∇𝑝 = 𝜃𝓰, ∇ · 𝒖 = 0, 𝜕𝑡𝜃 + (𝒖 · ∇)𝜃 = Iω𝜂,

𝒖 |Γ · 𝒏 = 0, (∇ ∧ 𝒖) |Γ = 0, 𝜕𝒏𝜃 |Γ = 0,

𝒖(·, 0) = 𝒖(·, 1) = 0, 𝜃 (·, 0) = 𝜃 (·, 1) = 0,

where

𝑝(𝒙, 𝑡) =
∫ 𝑥2

0

(
𝑦′2(𝑡)𝜒(𝑠)∫
𝒞
𝜒(𝒛) d𝒛

− 𝑦′2(𝑡)
)

d𝑠, 𝜂(𝒙, 𝑡) =
(𝑦′′2 𝜒 + 𝑦′2(𝒚 · ∇)𝜒) (𝒙, 𝑡)∫

𝒞
𝜒(𝒛) d𝒛

.

Next, we demonstrate the approximate controllability of a linear transport
problem with drift 𝒚 and a smooth localized control. Since the drift field 𝒚 is
tangential to 𝒞 at Γ, no boundary conditions are required.

Theorem 2.4. Fix any 𝑚 ∈ N, 𝜀 > 0, and target 𝜃1 ∈ H𝑚(𝒞;R). There exists a
control 𝑔 ∈ C∞(𝒞 × [0, 1];R) such that the solution 𝜃 ∈ C∞(𝒞 × [0, 1];R) to the
linear problem

𝜕𝑡𝜃 + (𝒚 · ∇)𝜃 = Iω𝑔, 𝜃 (·, 0) = 0

obeys ∥𝜃 (·, 1) − 𝜃1∥𝑚−1 < 𝜀∥𝜃1∥𝑚. Moreover, for a constant 𝐶𝜀 > 0 depending
only on 𝜀, the control can be chosen such that ∥𝑔∥L2 ( [0,1];H𝑚 (𝒞;R) ) < 𝐶𝜀 ∥𝜃1∥𝑚.
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Proof. By density and compactness arguments, we take 𝜃̃1 ∈ C∞(𝒞;R) with
∥𝜃1 − 𝜃̃1∥𝑚−1 < 𝜀∥𝜃1∥𝑚 and such that ∥𝜃̃1∥𝑚+1 < 𝐶𝜀 ∥𝜃1∥𝑚 for some 𝐶𝜀 > 1
depending only on 𝜀. Then, we define 𝜃̃ (·, 𝑡) ≔ 𝜅(𝑡)𝜃̃1, where 𝜅 ∈ C∞( [0, 1]; [0, 1])
obeys supp(𝜅) ⊂ (0, 1] and 𝜅(1) = 1. Moreover, we set 𝑔̃ ≔ 𝜕𝑡 𝜃̃ + (𝒚 · ∇)𝜃̃ and
note that 𝜃̃ solves the problem

𝜕𝑡 𝜃̃ + (𝒚 · ∇)𝜃̃ = 𝑔̃, 𝜃̃ (·, 0) = 0 (2.17)

and satisfies ∥𝜃̃ (·, 1) − 𝜃1∥𝑚−1 < 𝜀∥𝜃1∥𝑚.
Now, we claim that by using instead of 𝑔̃ the control

𝑔(𝒙, 𝑡) ≔ 𝜒(𝑥2)
𝐾∑︁
𝑘=1

1
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

I[𝑡𝑘𝑎 ,𝑡𝑘𝑏 ] (𝑡)𝑔̃
(
Y

(
𝒙, 𝑡,

𝑡 − 𝑡𝑘𝑎
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)
,
𝑡 − 𝑡𝑘𝑎
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)
, (2.18)

the solution to
𝜕𝑡𝜃 + (𝒚 · ∇)𝜃 = Iω𝑔, 𝜃 (·, 0) = 0 (2.19)

will likewise obey ∥𝜃 (·, 1) − 𝜃1∥𝑚−1 < 𝜀∥𝜃1∥𝑚. To see this, we employ the well-
known solution formulas for the involved transport problems. First, as Y is the
flow that governs (2.17) and (2.19), it holds

𝜃̃ (𝒙, 1) =
∫ 1

0
𝑔̃(Y (𝒙, 0, 𝑟), 𝑟) d𝑟, 𝜃 (𝒙, 1) =

∫ 1

0
𝑔(Y (𝒙, 0, 𝑠), 𝑠) d𝑟, (2.20)

noting that supp(𝜒) ⊂ ω, and recalling from Theorem 2.2 that Y (𝒙, 0, 1) =

Y (𝒙, 1, 0) = 𝒙 for 𝒙 ∈ 𝒞. Second, it can be shown as follows that both integrals in
(2.20) have the same value (see also [24]):∫ 1

0
𝑔(Y (𝒙, 0, 𝑠), 𝑠) d𝑠

=

𝐾∑︁
𝑘=1

∫ 1

0

I[𝑡𝑘𝑎 ,𝑡𝑘𝑏 ] (𝑠)

𝑡𝑘
𝑏
− 𝑡𝑘𝑎

𝜒(Y (𝒙, 0, 𝑠))𝑔̃
(
Y

(
𝒙, 0,

𝑠 − 𝑡𝑘𝑎
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)
,
𝑠 − 𝑡𝑘𝑎
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)
d𝑠

=

𝐾∑︁
𝑘=1

∫ 1

0
𝜒

(
Y

(
𝒙, 0, 𝑟 (𝑡𝑘𝑏 − 𝑡

𝑘
𝑎) + 𝑡𝑘𝑎

))
𝑔̃(Y (𝒙, 0, 𝑟), 𝑟) d𝑟

=

∫ 1

0
𝑔̃(Y (𝒙, 0, 𝑟), 𝑟) d𝑟,

(2.21)

where we used P1-P3 from Theorem 2.2, the substitutions 𝑟 = (𝑠 − 𝑡𝑘𝑎) (𝑡𝑘𝑏 − 𝑡
𝑘
𝑎)−1

for 𝑘 ∈ {1, . . . , 𝐾}, and the properties of 𝜒 from (2.15). In particular, regarding
the last equality in (2.21), we note that 𝜒 generates the partition of unity (𝜒(· +
3(𝑖 − 1)𝑙𝐾/4))𝑖∈{1,...,𝐾 } , and one can employ P3, because 𝑟 (𝑡𝑘

𝑏
− 𝑡𝑘𝑎) + 𝑡𝑘𝑎 ∈ [𝑡𝑘𝑎, 𝑡𝑘𝑏]

for all 𝑟 ∈ [0, 1]; as 𝒚 only depends on time, this yields for any fixed 𝒙 ∈ 𝒞 that

𝐾∑︁
𝑘=1

𝜒

(
Y

(
𝒙, 0, 𝑟 (𝑡𝑘𝑏 − 𝑡

𝑘
𝑎) + 𝑡𝑘𝑎

))
= 1, 𝑟 ∈ [0, 1] .
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The bound for ∥𝑔∥L2 ( [0,1];H𝑚 (𝒞;R) ) can be concluded from (2.18) and the
definition of 𝜃̃, noting that 𝒚 and its flow Y are smooth and universally fixed. Also,
at first it only holds 𝑔 ∈ L2( [0, 1]; C∞(𝒞;R)), but we can approximate 𝑔 by a
C∞(𝒞 × [0, 1];R) version while maintaining ∥𝜃 (·, 1) − 𝜃1∥𝑚−1 < 𝜀∥𝜃1∥𝑚. □

Remark 2.5. In the proof of Theorem 2.4 with 𝑚 ≥ 2, if one approximates
𝜃1 ∈ H𝑚N in the there-described way by 𝜃̃1 ∈ H𝑚+1

N , then a direct calculation, using
the properties of 𝒚 and 𝜒 in (2.18), provides 𝜕𝒏Iω𝑔(·, 𝑡) |Γ = 0 for 𝑡 ∈ [0, 1].

Now, we steer the temperature in the nonlinear problem, while ensuring that the
final vorticity is a small perturbation of the initial one; for the torus case, see [24].
The employed return method argument is inspired by [5] and [22, 23], and the idea
is to view a scaled solution to (1.1) on a small time interval as a perturbation of
an accordingly scaled return method trajectory, as described in Remark 2.3.

Theorem 2.6. Let 𝑇 > 0, 𝜀 > 0, (𝑤0, 𝜃0, 𝜃1) ∈ H2
0×H3

N×H3
N, and forces 𝜑 = ∇∧𝚽

and 𝜓 given by Theorem 1.1. There exists 𝛿0 > 0 such that for each 𝛿 ∈ (0, 𝛿0)
there is a control 𝜂 ∈ C∞(𝒞 × [0, 𝛿];R) with

∥𝑆𝛿 (𝑤0, 𝜃0, 𝜑, 𝜓 + 𝜂) − (𝑤0, 𝜃1)∥H1×H2 < 𝜀. (2.22)

Moreover, the velocity 𝒖𝛿 , associated to 𝑤0, 𝜃0, 𝜑, 𝜓, and 𝜂 via (2.1), obeys∫
𝒞

𝒖𝛿 (𝒙, 𝑡) ·𝓰 d𝒙 = [0, 𝑦2, 𝛿 (𝑡)]⊤ = 𝒚 𝛿 (𝑡) ≔ 𝛿−1𝒚(𝛿−1𝑡), 𝑡 ∈ [0, 𝛿] .

Proof. First, a family of auxiliary controls is constructed via Theorem 2.4. Second,
a controlled nonlinear trajectory is fixed. Third, asymptotic expansions are proposed
for verifying (2.22). Finally, the remainder estimates are given.

Step 1. Controlling a family of linear problems. For 𝛿 ∈ (0, 1), we denote
by Θ̃𝛿 the unique solution to the uncontrolled transport equation with scaled
temperature initial data

𝜕𝑡Θ̃𝛿 + (𝒚 · ∇)Θ̃𝛿 = 0, Θ̃𝛿 (·, 0) = 𝛿𝜃0, (2.23)

emphasizing that 𝜕𝒏Θ̃𝛿 (·, 𝑡) |Γ = 0 for all 𝑡 ∈ [0, 1] due to 𝜃0 ∈ H3
N. Since Y is

the flow of 𝒚 from Theorem 2.2, we have Θ̃𝛿 (·, 1) = 𝛿𝜃0. Now, for any 𝛿 ∈ (0, 1),
we apply Theorem 2.4, in the way described by Remark 2.5, with the target state
𝛿(𝜃1 − 𝜃0). This yields a family of smooth controls (𝑔𝛿)𝛿∈ (0,1) , spatially supported
in ω, such that the solution to the problem

𝜕𝑡Θ̂𝛿 + (𝒚 · ∇)Θ̂𝛿 = Iω𝑔𝛿 , Θ̂𝛿 (·, 0) = 0 (2.24)

satisfies ∥Θ̂𝛿 (·, 1) − 𝛿(𝜃1 − 𝜃0)∥2 < 𝜀𝛿∥𝜃1 − 𝜃0∥3 and 𝜕𝒏Θ̂𝛿 (·, 𝑡) |Γ = 0. Using the
linearity of (2.23) and (2.24), it follows that 𝜗𝛿 ≔ Θ̃𝛿 + Θ̂𝛿 obeys

𝜕𝑡𝜗𝛿 + (𝒚 · ∇)𝜗𝛿 = Iω𝑔𝛿 ,

𝜗𝛿 (·, 0) = 𝛿𝜃0, ∥𝜗𝛿 (·, 1) − 𝛿𝜃1∥2 < 𝜀𝛿∥𝜃1 − 𝜃0∥3.
(2.25)
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However, in the steps below, we will work with the following average-free version:

𝜗𝛿 (𝒙, 𝑡) ≔ 𝜗𝛿 (𝒙, 𝑡) −
𝜒(𝑥2)

∫ 𝑡
0

∫
𝒞
𝑔𝛿 (𝒛, 𝑠) d𝒛d𝑠∫

𝒞
𝜒(𝒛) d𝒛

,

which obeys – by Remark 2.5, (2.25), and 𝜃0, 𝜃1 ∈ H3
N – the initial, target, and

boundary conditions

𝜗𝛿 (0) = 𝛿𝜃0, ∥𝜗𝛿 (1) − 𝛿𝜃1∥2 < 𝜀𝛿∥𝜃1 − 𝜃0∥3, 𝜕𝒏𝜗𝛿 |Γ = 0. (2.26)

Moreover, together with the control

𝜂𝛿 (𝒙, 𝑡) ≔ 𝑔𝛿 (𝒙, 𝑡) −
𝑦2𝜒

′(𝑥2)
∫ 𝑡

0

∫
𝒞
𝑔𝛿 (𝒛, 𝑠) d𝒛d𝑠 + 𝜒(𝑥2)

∫
𝒞
𝑔𝛿 (𝒛, 𝑡) d𝒛∫

𝒞
𝜒(𝒛) d𝒛

,

(2.27)
it holds

𝜕𝑡𝜗𝛿 + (𝒚 · ∇)𝜗𝛿 = Iω𝜂𝛿 . (2.28)

Meanwhile, we define the corresponding function 𝑣̃𝛿 as the solution to

𝜕𝑡 𝑣̃𝛿 + (𝒚 · ∇)̃𝑣𝛿 = 𝜕1𝜗𝛿 , 𝑣̃𝛿 (·, 0) = 𝑤0, (2.29)

observing that 𝑣̃𝛿 |Γ = 0 due to (2.26) and the choice of 𝑤0. Direct estimates based
on the solution representations for the transport problems in (2.23)–(2.25), (2.28),
and (2.29) provide

sup
𝑡∈[0,1]

∥̃𝑣𝛿 (·, 𝑡) − 𝑤0∥2 + sup
𝑡∈[0,1]

∥𝜗𝛿 (·, 𝑡)∥3 ≲ 𝐶𝜀𝛿, (2.30)

where 𝐶𝜀 > 1 is the fixed constant from Theorem 2.4 depending only on 𝜀.

Step 2. Controls for the nonlinear problem. Given (𝜂𝛿)𝛿∈ (0,1) from (2.27),
we aim to relate, for small 𝛿, the final states of suitably controlled trajectories
of the nonlinear problem (2.1) to those of the linear systems with parameter 𝛿
constituted by (2.28) and (2.29). Hereto, in the next step (see (2.34)), we will
view 𝒖𝛿 on the short time interval [0, 𝛿] as a perturbation of the leading order
profile 𝒚 𝛿 (𝑡) = 𝛿−1𝒚(𝛿−1𝑡). But for this to be feasible, the velocity 𝒖𝛿 should
have the vertical average ∫𝒞 𝒖𝛿 (𝒙, 𝑡) ·𝓰(𝒙) d𝒙 = 𝒚 𝛿 (𝑡) for all 𝑡 ∈ [0, 𝛿]. To ensure
this property, we can act on the velocity average through the temperature control.
Namely, for each 𝛿 ∈ (0, 1), we denote (cf. Remark 2.7)

𝜂𝛿 ≔ 𝛿−2𝜂𝛿 (·, 𝛿−1·) +
𝑦′′2, 𝛿𝜒 − 𝜏𝑦′2, 𝛿Δ𝜒 + 𝑦′2, 𝛿 (𝒖̃𝛿 · ∇)𝜒∫

𝒞
𝜒(𝑥2) d𝒙

, (2.31)

where 𝜒 is from (2.14) and 𝒖̃𝛿 is the solution to

∇ ∧ 𝒖̃𝛿 (·, 𝑡) = 𝑆1
𝑡 (𝑤0, 𝜃0, 𝜑, 𝜓 + 𝛿−2𝜂𝛿 (·, 𝛿−1·) + 𝑦′′2, 𝛿),

∇ · 𝒖̃𝛿 = 0, 𝒖̃𝛿 |Γ · 𝒏 = 0,
∫
𝒞

𝒖̃𝛿 (𝒙, 𝑡) ·𝓰 d𝒙 = 𝒚 𝛿 (𝑡),
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Next, we fix the controlled trajectory

(𝑤𝛿 , 𝜃 𝛿) (·, 𝑡) ≔ 𝑆𝑡 (𝑤0, 𝜃0, 𝜑, 𝜓 + 𝜂𝛿), 𝑡 ∈ [0, 𝛿] (2.32)

and denote by 𝒖𝛿 the associated velocity. Now, due to the above constructions, we
can verify that

∇ ∧ 𝒖𝛿 = 𝑤𝛿 , ∇ · 𝒖𝛿 = 0, 𝒖𝛿 |Γ · 𝒏 = 0,
∫
𝒞

𝒖𝛿 (𝒙, 𝑡) ·𝓰 d𝒙 = 𝒚 𝛿 (𝑡)

and
𝒖𝛿 = 𝒖̃𝛿 . (2.33)

Indeed, each 𝜂𝛿 (·, 𝑡) is average-free for almost all 𝑡 ∈ (0, 1) because of (2.27), and
the second term in the right-hand sides of (2.31) ensures that (cf. (2.1) and (2.2))

𝜃 𝛿 (·, 𝑡) = 𝑆2
𝑡 (𝑤0, 𝜃0, 𝜑, 𝜓 + 𝛿−2𝜂𝛿 (·, 𝛿−1·)) +

𝑦′2, 𝛿𝜒∫
𝒞
𝜒(𝑥2) d𝒙

,∫
𝒞

𝒖𝛿 (𝒙, 𝑡) ·𝓰 d𝒙 =

∫ 𝑡

0

∫
𝒞

𝜃 𝛿 (𝒙, 𝑠) d𝒙d𝑠 = 𝑦2, 𝛿 (𝑡).

In order to confirm (2.33), one notes that 𝒚′𝛿 (𝑡) − 𝒚′𝛿 (𝑡)𝜒/∫𝒞 𝜒(𝒛) d𝒛 is curl-free
and average-free for 𝑡 ∈ [0, 𝛿], implying 𝒚′𝛿 − 𝒚′𝛿𝜒/∫𝒞 𝜒(𝒛) d𝒛 = ∇𝑞 with smooth 𝑞.
Hence, 𝒖𝛿 and 𝒖̃𝛿 solve the same velocity equation with identical data. See also
Remark 2.3.

Remark 2.7. The definition in (2.31) has the effect, that if 𝜌 solves 𝜕𝑡 𝜌 − 𝜏Δ𝜌 +
(𝒖̃𝛿 ·∇)𝜌 = 𝛿−2𝜂𝛿 (·, 𝛿−1·), then 𝜌̃ ≔ 𝜌 + 𝜒𝑦′2, 𝛿 obeys 𝜕𝑡 𝜌̃− 𝜏Δ𝜌̃ + (𝒖̃𝛿 ·∇) 𝜌̃ = 𝜂𝛿 .

Step 3. Asymptotic expansions. Given the trajectory (𝑤𝛿 , 𝜃 𝛿) defined in (2.32),
we make on the time interval [0, 𝛿] an ansatz of the form

𝑤𝛿 = 𝑧𝛿 + 𝑞 𝛿 , 𝒖𝛿 = 𝒚 𝛿 + 𝒁𝛿 + 𝑸 𝛿 , 𝜃 𝛿 = 𝜗𝛿 +
𝑦′2, 𝛿𝜒∫

𝒞
𝜒(𝑥2) d𝒙

+ 𝑟 𝛿 , (2.34)

where
𝑧𝛿 (·, 𝑡) ≔ 𝑣̃𝛿 (·, 𝛿−1𝑡), 𝜗𝛿 (·, 𝑡) ≔ 𝛿−1𝜗𝛿 (·, 𝛿−1𝑡)

are determined through (2.28) and (2.29), while the vector fields 𝒁𝛿 and 𝑸 𝛿 are
the unique functions satisfying

∇ ∧ 𝒁𝛿 = 𝑧𝛿 , ∇ · 𝒁𝛿 = 0, 𝒁𝛿 |Γ · 𝒏 = 0,
∫
𝒞

𝒁𝛿 (𝒙, 𝑡) ·𝓰 d𝒙 = 0,

∇ ∧ 𝑸 𝛿 = 𝑞 𝛿 , ∇ · 𝑸 𝛿 = 0, 𝑸 𝛿 |Γ · 𝒏 = 0,
∫
𝒞

𝑸 𝛿 (𝒙, 𝑡) ·𝓰 d𝒙 = 0.

It should be emphasized that, due to the boundary data of 𝜃0 and 𝜃1, and the
Dirichlet condition for 𝑤0, one has 𝑧𝛿 |Γ = 0 and 𝜕𝒏𝜗𝛿 |Γ = 0; see also Remark 2.5,
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(2.26), (2.28), and (2.29). In view of (2.26), (2.34), and the compact support of 𝒚,
it remains to show

∥𝑞 𝛿 (·, 𝛿)∥1 + ∥𝑟 𝛿 (·, 𝛿)∥2 −→ 0 as 𝛿 −→ 0. (2.35)

The limit (2.35) can be verified via energy estimates for the equations satisfied
by 𝑞 𝛿 and 𝑟 𝛿 , namely

𝜕𝑡𝑞 𝛿 − 𝜈Δ𝑞 𝛿 +
(
(𝒚 𝛿 + 𝒁𝛿 + 𝑸 𝛿) · ∇

)
𝑞 𝛿 + (𝑸 𝛿 · ∇)𝑧𝛿 = 𝐹𝛿 + 𝜕1𝑟 𝛿 ,

𝜕𝑡𝑟 𝛿 − 𝜏Δ𝑟 𝛿 +
(
(𝒚 𝛿 + 𝒁𝛿 + 𝑸 𝛿) · ∇

)
𝑟 𝛿 + (𝑸 𝛿 · ∇)𝜗𝛿 = 𝐺 𝛿 ,

𝑞 𝛿 (·, 0) = 0, 𝑟 𝛿 (·, 0) = 0, 𝑞 𝛿 |Γ = 0, 𝜕𝒏𝑟 𝛿 |Γ = 0,
(2.36)

where 𝐹𝛿 ≔ 𝜑 − (𝒁𝛿 ·∇)𝑧𝛿 + 𝜈Δ𝑧𝛿 and 𝐺 𝛿 ≔ 𝜓 − (𝒁𝛿 ·∇)𝜗𝛿 + 𝜏Δ𝜗𝛿 . To obtain
(2.36), one inserts (2.32) and (2.34) into (2.1), and further utilizes that 𝜕1𝜒 ≡ 0 by
(2.14), as well as the expression of 𝜂𝛿 from (2.31) in conjunction with (2.33).

Step 4. Estimates. Let 𝑡 ∈ [0, 𝛿], and recall the Sobolev embeddings H1(𝒞;R) ⊂
L4(𝒞;R) and H2(𝒞;R) ⊂ L∞(𝒞;R). We multiply in (2.36) respectively with
(−Δ)𝑖𝑞 𝛿 and (−Δ)𝑖𝑟 𝛿 for 𝑖 = 0, 1, and then use integration by parts. By employing
the boundary values of the involved functions, (1.2), and (2.12), we find

∥𝑞 𝛿 (·, 𝑡)∥2
1 + ∥𝑟 𝛿 (·, 𝑡)∥2

1 + (1 − ℓ)
∫ 𝑡

0

(
∥𝑞 𝛿 (·, 𝑠)∥2

2 + ∥𝑟 𝛿 (·, 𝑠)∥2
2

)
d𝑠

≲
∫ 𝑡

0
ℓ−1

(
∥𝐹𝛿 (·, 𝑠)∥2 + ∥𝐺 𝛿 (·, 𝑠)∥2 + ∥𝑞 𝛿 (·, 𝑠)∥2

1 + ∥𝑟 𝛿 (·, 𝑠)∥2
1

)
d𝑠

+
∫ 𝑡

0
ℓ−1

(
∥𝑞 𝛿 (·, 𝑠)∥4

1 + ∥𝑟 𝛿 (·, 𝑠)∥4
1 + ∥𝜗𝛿 (·, 𝑠)∥4

1

)
d𝑠

+
∫ 𝑡

0

(
∥𝑧𝛿 (·, 𝑠)∥2 + |𝒚 𝛿 (·, 𝑠) |

) (
∥𝑞 𝛿 (·, 𝑠)∥2

1 + ∥𝑟 𝛿 (·, 𝑠)∥2
1

)
d𝑠,

(2.37)

where ℓ ∈ (0, 1) is fixed independently of 𝛿. Next, after acting in the equation
for 𝑟 𝛿 in (2.36) with 𝜕𝑖 , where 𝑖 ∈ {1, 2}, it follows that

𝜕𝑡𝜕𝑖𝑟 𝛿 − 𝜏Δ𝜕𝑖𝑟 𝛿 +
(
(𝒚 𝛿 + 𝒁𝛿 + 𝑸 𝛿) · ∇

)
𝜕𝑖𝑟 𝛿 + (𝑸 𝛿 · ∇)𝜕𝑖𝜗𝛿

= 𝜕𝑖𝐺 𝛿 − ((𝜕𝑖𝒁𝛿 + 𝜕𝑖𝑸 𝛿) · ∇) 𝑟 𝛿 − (𝜕𝑖𝑸 𝛿 · ∇)𝜗𝛿 .
Multiplying with −Δ𝜕𝑖𝑟 𝛿 , integrating by parts, and using the known boundary
values of the involved functions, we obtain together with (2.37) that

∥𝑞 𝛿 (·, 𝑡)∥2
1 + ∥𝑟 𝛿 (·, 𝑡)∥2

2 + (1 − ℓ)
∫ 𝑡

0

(
∥𝑞 𝛿 (·, 𝑠)∥2

2 + ∥𝑟 𝛿 (·, 𝑠)∥2
3

)
d𝑠

≲
∫ 𝑡

0
ℓ−1

(
∥𝐹𝛿 (·, 𝑠)∥2 + ∥𝐺 𝛿 (·, 𝑠)∥2

1 + ∥𝑞 𝛿 (·, 𝑠)∥2
1 + ∥𝑟 𝛿 (·, 𝑠)∥2

2

)
d𝑠

+
∫ 𝑡

0
ℓ−1

(
∥𝑞 𝛿 (·, 𝑠)∥4

1 + ∥𝑟 𝛿 (·, 𝑠)∥4
2 + ∥𝜗𝛿 (·, 𝑠)∥4

2

)
d𝑠

+
∫ 𝑡

0

(
∥𝑧𝛿 (·, 𝑠)∥2 + |𝒚 𝛿 (·, 𝑠) |

) (
∥𝑞 𝛿 (·, 𝑠)∥2

1 + ∥𝑟 𝛿 (·, 𝑠)∥2
2

)
d𝑠,
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with fixed ℓ ∈ (0, 1) independent of 𝛿. Moreover, the forces 𝜑 = ∇ ∧𝚽 and 𝜓 are
fixed in Theorem 1.1, and the norms ∥𝑧𝛿 (·, 𝑡)∥2 and ∥𝜗𝛿 (·, 𝑡)∥3 are for 𝑡 ∈ [0, 𝛿]
bounded by an absolute constant. Thus, by noting that

∥(𝒁𝛿 · ∇)𝑧𝛿 (·, 𝑡)∥ ≤ ∥𝑧𝛿 (·, 𝑡)∥2
1, ∥Δ𝑧𝛿 (·, 𝑡)∥ ≤ ∥𝑧𝛿 (·, 𝑡)∥2,

∥(𝒁𝛿 · ∇)𝜗𝛿 (·, 𝑡)∥1 ≤ ∥𝑧𝛿 (·, 𝑡)∥2
1 + ∥𝜗𝛿 (·, 𝑡)∥2

2, ∥Δ𝜗𝛿 (·, 𝑡)∥1 ≤ ∥𝜗𝛿 (·, 𝑡)∥3,

we can deduce (using the substitution 𝑠 = 𝛿𝜎)

lim
𝛿→0

∫ 𝛿

0
(∥𝐹𝛿 (·, 𝑠)∥ + ∥𝐺 𝛿 (·, 𝑠)∥1) d𝑠 = 0,∫ 𝑡

0

(
∥𝑧𝛿 (·, 𝑠)∥2 + |𝒚 𝛿 (·, 𝑠) |

)
d𝑠 =

∫ 1

0
(𝛿 ∥̃𝑣𝛿 (·, 𝜎)∥2 + |𝒚(𝜎) |) d𝜎 ≤ 𝑀𝛿 ,

where (𝑀𝛿)𝛿∈ (0,1) is a bounded family. In particular, thanks to (2.30), one has
lim𝛿→0 𝑀𝛿 = sup𝑡∈[0,1] |𝒚(𝑡) |. In conclusion, using Grönwall’s inequality,

∥𝑞 𝛿 (·, 𝑡)∥2
1 + ∥𝑟 𝛿 (·, 𝑡)∥2

2 ≲ 𝑐𝛿 +
∫ 𝑡

0
∥
(
𝑞 𝛿 (·, 𝑠)∥4

1 + ∥𝑟 𝛿 (·, 𝑠)∥4
2

)
d𝑠,

where lim𝛿→0 𝑐𝛿 = 0. Like in the proof of Theorem 2.1, comparing with 𝑓 ′/ 𝑓 2 ≤ 𝐶
for an absolute constant 𝐶 > 0, the limit (2.35) follows. □

2.4 Conclusion

To conclude Theorem 1.1, it suffices, in view of the estimate (1.2), to obtain for
any 𝜀 > 0 a control 𝜂 ∈ C∞(𝒞 × [0, 𝑇]) with supp(𝜂) ⊂ ω × (0, 𝑇) such that the
corresponding solution to (1.1) obeys

∥(∇ ∧ 𝒖) (·, 𝑇) − 𝑤𝑇 ∥1 + ∥𝜃 (·, 𝑇) − 𝜃𝑇 ∥2 + |
∫
𝒞

𝒖(𝒙, 𝑇) ·𝓰 d𝒙 | < 𝜀,

where 𝑤𝑇 ≔ ∇ ∧ 𝒖𝑇 .
In what remains, we specify a control 𝜂, and the corresponding controlled

trajectory, on respective time intervals [0, 𝑇1], [𝑇1, 𝑇2], [𝑇2, 𝑇3], and [𝑇3, 𝑇], with
0 < 𝑇1 < 𝑇2 < 𝑇3 < 𝑇 .

Step 1. Smoothing. Take 𝑇1 ∈ (0, 𝑇) such that the corresponding solution (𝑤, 𝜃)
to (2.1) with “zero control”, i.e., 𝜂 = 0, satisfies

(𝑤𝑇1 , 𝜃𝑇1) ≔ (𝑤(·, 𝑇1), 𝜃 (·, 𝑇1)) ∈ H2
0 × H3

N.

As mentioned in Remarks 1.2 and 1.3, the assumptions on (𝚽, 𝜓) in Theorem 1.1
allow us to access this parabolic smoothing for (𝒖, 𝜃) up to the regularity

L∞((0, 𝑇); H2(𝒞;R2+1)) ∩ L2((0, 𝑇); H3(𝒞;R2+1)),
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with the details being provided, e.g., by [4, Lemma 2.1] without external forces;
if one would consider smooth external forces, for example, (𝚽, 𝜓) = (0, 0), one
would obtain solutions that are smooth for 𝑡 > 0. See also [25, Remark 3.2] for
such an argument taking into account external forces, but for the case of the no-slip
boundary condition.

Owing to the global wellposedness of (1.1), we take 𝑇1 ∈ (0, 𝑇) so close to 𝑇
that every uncontrolled trajectory of (2.1) starting at 𝑡 = 𝑇 inside the 2𝜀/3-ball with
center (𝑤𝑇 , 𝜃𝑇 ) in H1(𝒞;R) × H2(𝒞;R) will not cross the boundary of the 𝜀-ball
with center (𝑤𝑇 , 𝜃𝑇 ) in H1(𝒞;R) × H2(𝒞;R) until 𝑡 = 𝑇 + (𝑇 − 𝑇1).

Step 2. Reaching a special temperature state. Let 𝜉 ∈ C∞(𝒞;R) be any
average-free profile with 𝜕1𝜉 |Γ = 𝜕111𝜉 |Γ = 0 and so that

∥(𝑤𝑇1 − 𝜕1𝜉) − 𝑤𝑇 ∥1 < 𝜀/3.

Such a choice is possible due to the boundary conditions satisfied by 𝑤(·, 𝑇1)
and 𝑤𝑇 , and by the density of C∞

0 (𝒞;R) in H1
0, where C∞

0 (𝒞;R) denotes the
smooth function with compact support in 𝒞. Indeed, by density, we first take
ℎ ∈ C∞

0 (𝒞;R) with ∥(𝑤𝑇1 − ℎ) − 𝑤𝑇 ∥1 < 𝜀/3. Next, we integrate ℎ in the 𝑥1-
direction and subsequently correct the average; namely

𝜉 (𝑥1, 𝑥2) ≔
∫ 𝑥1

−1
ℎ(𝑠, 𝑥2) d𝑠, 𝜉 ≔ 𝜉 −

∫
𝒞

𝜉 (𝒙) d𝒙,

emphasizing that 𝜕1𝜉 |Γ = 𝜕111𝜉 |Γ = 0, and that 𝜉 has zero average. Now, using
Theorem 2.6 and the smoothing property, we fix a small 𝛿̃ ∈ (0, 𝑇 − 𝑇1) and a
control 𝜂 ∈ C∞(𝒞 × [0, 𝑇]) such that the corresponding solution (𝒖, 𝑤, 𝜃) to (2.1)
starting from 𝑡 = 𝑇1 with data (𝑤𝑇1 , 𝜃𝑇1) satisfies at the time 𝑇2 ≔ 𝑇1 + 𝛿̃ the
conditions

∥𝑤𝑇2 − 𝑤𝑇1 ∥1 < 𝛽, ∥𝜃𝑇2 − 𝛾−1𝜉∥2 < 𝜅,

∫
𝒞

𝒖𝑇2 ·𝓰 d𝒙 = 0,

(𝒖𝑇2 , 𝑤𝑇2 , 𝜃𝑇2) ≔ (𝒖, 𝑤, 𝜃) (·, 𝑇2)) ∈ H2
0 × H3

N,

where 𝛽 > 0, 𝛾 > 0, and 𝜅 > 0 are selected so small that one has (2.3) with 𝜀/2
when applying Theorem 2.1 with initial data (𝑤𝑇2 , 𝜃𝑇2) and 𝛿 = 𝛾 and 𝑇2 + 𝛾 < 𝑇 .

Step 3. Controlling the vorticity. Theorem 2.1 provides 𝑇3 ∈ (𝑇2, 𝑇), e.g.,
𝑇3 = 𝑇2 + 𝛾, such that without using any control, the solution (𝒖, 𝑤, 𝜃) to (2.1) on
the interval [𝑇2, 𝑇3] issued at 𝑡 = 𝑇2 from (𝑤𝑇2 , 𝜃𝑇2), as obtained in the previous
step, satisfies

∥𝑤(·, 𝑇3) − 𝑤𝑇 ∥1 < 𝜀/2,
∫
𝒞

𝒖(𝒙, 𝑇3) ·𝓰 d𝒙 = 0.
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Step 4. Correcting the temperature. Finally, another application of Theorem 2.6
provides a time 𝑇4 ∈ (𝑇3, 𝑇) such that the solution (𝑤, 𝜃) to (1.1) on the interval
[𝑇3, 𝑇4] with initial data 𝑤(·, 𝑇3) and 𝜃 (·, 𝑇3), as fixed above, obeys

∥𝑤(·, 𝑇4) − 𝑤𝑇 ∥1 + ∥𝜃 (·, 𝑇4) − 𝜃𝑇 ∥2 < 2𝜀/3.

As 𝑇1 was at the beginning chosen sufficiently close to 𝑇 , the argument is complete.
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