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Abstract

We show that buoyancy driven flows can be steered in an arbitrary time
towards any state by applying as control only an external temperature profile in a
subset of small measure. More specifically, we prove that the 2D incompressible
Boussinesq system on the torus is globally approximately controllable via
physically localized heating or cooling. In addition, our controls have an explicitly
prescribed structure; even without such structural requirements, large data
controllability results for Boussinesq flows driven merely by a physically localized
temperature profile were so far unknown. The presented method exploits various
connections between the model’s underlying transport-, coupling-, and scaling
mechanisms.
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1 Introduction

We demonstrate the global approximate controllability of incompressible buoyancy-
driven flows regulated only by a physically localized temperature control; “global”
means in this context that the initial and target profiles might be far apart from each
other in the state space. The considered incompressible Boussinesq system is relevant
to the study of, e.g., geophysical phenomena and Rayleigh-Bénard convection, and it
also serves applications involving heating and ventilation (cf. [1,14,23]). In particular,
it is desirable to uncover coupling mechanisms that facilitate the controllability of
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nonlinear fluids merely via regionally applied heating/cooling, without imposing
smallness constraints on the data. This can matter from practical perspectives and
provides deeper theoretical insights regarding the mathematical model itself. But
despite the variety of motivations, all available controllability results for the Boussinesq
equations steered only by a temperature control have been limited to small perturbations
of linear dynamics in 2D; see Section 1.5 for bibliographical remarks. In this article,
contrasting the existing literature, a truly global controllability problem for the
nonlinear Boussinesq system is tackled; the present approach even allows to fix the
control’s structure in terms of a small finite number of universal physically localized
profiles. Our proof features geometric arguments, a multi-stage scaling procedure, and
the notion of transported Fourier modes from [20].

1.1 The main controllability problem

Let 𝑇 > 0 and assume that the gravitational field is given by 𝒆grav ≔ [0, 1]⊤. The
state of a viscous incompressible fluid in T2 ≔ R2/2𝜋Z2 is then described by means
of its 2𝜋-periodic velocity, temperature, and exerted pressure; respectively,

𝒖 : T2 × [0, 𝑇] −→ R2, 𝜃 : T2 × [0, 𝑇] −→ R, 𝑝 : T2 × [0, 𝑇] −→ R,

which are governed by the Boussinesq system

𝜕𝑡𝒖 − 𝜈Δ𝒖 + (𝒖 · ∇) 𝒖 + ∇𝑝 = 𝜃𝒆grav +𝚽ext, ∇ · 𝒖 = 0, 𝒖(·, 0) = 𝒖0,

𝜕𝑡𝜃 − 𝜏Δ𝜃 + (𝒖 · ∇)𝜃 = Iω𝜂 + 𝜓ext, 𝜃 (·, 0) = 𝜃0,
(1.1)

where 𝜈 > 0 is the viscosity and 𝜏 > 0 denotes the thermal diffusivity. Moreover,
the functions 𝚽ext and 𝜓ext represent given external forces, which are assumed to be
average-free for simplicity. A distinguished role is played by the unknown profile 𝜂
in (1.1); it will act as the control and shall be localized in an arbitrarily thin horizontal
strip (cf. Figure 1)

ω ≔ T × (𝑎, 𝑏), 0 < 𝑎 < 𝑏 ≤ 2𝜋.

Given any initial states (𝒖0, 𝜃0), target states (𝒖𝑇 , 𝜃𝑇 ), control time 𝑇 > 0, and
approximation error 𝜀 > 0, we show (cf. Theorem 1.2) that there exists a temperature
control 𝜂 supported in ω such that the corresponding solution (𝒖, 𝜃) to (1.1) approaches
the target at time 𝑡 = 𝑇 with respect to a Sobolev norm ∥ · ∥; that is,

∥𝒖(·, 𝑇) − 𝒖𝑇 ∥ + ∥𝜃 (·, 𝑇) − 𝜃𝑇 ∥ < 𝜀. (1.2)

1.2 More degenerate controllability problems

Our goal described above will be achieved as by-product of studying a more degenerate
situation. Hereto, let us consider the Boussinesq problem with an additional control
acting parallel to gravitation on the velocity; namely,

𝜕𝑡𝒖 − 𝜈Δ𝒖 + (𝒖 · ∇) 𝒖 + ∇𝑝 = (𝜃 + Iω𝜂)𝒆grav +𝚽ext, ∇ · 𝒖 = 0, 𝒖(·, 0) = 𝒖0,

𝜕𝑡𝜃 − 𝜏Δ𝜃 + (𝒖 · ∇)𝜃 = Iω𝜂 + 𝜓ext, 𝜃 (·, 0) = 𝜃0.
(1.3)

2



ω
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Figure 1: The control region ω ⊂ T2 is any open horizontal strip and 𝒆grav points vertically.

We shall obtain controls 𝜂 and 𝜂 that are supported in ω, composed of a few universal
profiles, and ensure for the respective solution to (1.3) the property

∥𝒖(·, 𝑇) − 𝒖𝑇 ∥ + ∥𝜃 (·, 𝑇) − 𝜃𝑇 ∥ < 𝜀. (1.4)

In other words, we are going to describe a small number of universally fixed pro-
files (actuators) 𝜁1, . . . , 𝜁6 ∈ L2((0, 1); C∞(T2;R)) that vanish outside ω and are
independent of all imposed data – except the control region ω – such that

𝜂(𝒙, 𝑡) =
6∑︁
𝑙=1

𝛾𝑙 (𝑡)𝜁𝑙 (𝒙, 𝛾(𝑡)), 𝜂(𝑥1, 𝑥2, 𝑡) = 𝛾(𝑡)𝜁1(𝑥2), (1.5)

where the unknown parameters 𝛾, 𝛾, 𝛾1, . . . , 𝛾6 ∈ L2((0, 𝑇);R) resemble the actual
controls; we call this type of control “finitely decomposable”.

Notably – when one varies the initial and target states, the viscosity, the thermal
diffusivity, the external forces, or the error – the profiles 𝜁1, . . . , 𝜁6 in (1.5) remain
unchanged. Thus, solving the controllability problem (1.3)-(1.4) means determin-
ing 𝛾, 𝛾1, . . . , 𝛾6, and 𝛾 such that the solution to (1.3) obeys (1.4). In fact, 𝛾 will be
smooth with supp(𝛾) ⊂ (0, 𝑇), and it shall be possible to take 𝜁1 and 𝜁2 as single
variable functions satisfying 𝜁2 = 𝜁 ′1. Further, as detailed in Section 3.3, one may,
by means of the transformation 𝜃 (𝑥1, 𝑥2, 𝑡) ↦→ 𝜃 (𝑥1, 𝑥2, 𝑡) + 𝛾(𝑡)𝜁1(𝑥2), interchange
the controls in (1.5) with 𝜂 = 0 and a finitely decomposable temperature control plus
explicit feedback term; that is,

𝜂(𝑥1, 𝑥2, 𝑡) =
(
𝛾′(𝑡) + 𝛾1(𝑡)

)
𝜁1(𝑥2) +

(
𝛾(𝑡)𝒖(𝑥1, 𝑥2, 𝑡) · 𝒆grav + 𝛾2(𝑡)

)
𝜁2(𝑥2)

− 𝜏𝛾(𝑡)𝜁 ′′1 (𝑥2) +
6∑︁
𝑙=3

𝛾𝑙 (𝑡)𝜁𝑙 (𝑥1, 𝑥2, 𝛾(𝑡)),

𝜂(𝑥1, 𝑥2, 𝑡) = 0,

(1.6)

noting that 𝜂 could in (1.3) be replaced by a smooth approximation of 𝜂 while
maintaining (1.4). In (1.6), the map 𝒖 ↦→ 𝛾𝜁2𝒖 · 𝒆grav can be viewed as an explicitly
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given linear feedback law for the universally given actuator 𝜁2, which is independent
of the imposed data. The main controllability problem described in Section 1.1, where
only a physically localized temperature control is employed, is solved by finding a
control 𝜂 of the form stated in (1.6) for the Boussinesq problem (1.3).

Remark 1.1. As a side-note (cf. Remark 3.8), when allowing a non-localized spatially
constant profile in the temperature control, we can also ensure (1.2) by using merely
a finitely decomposable temperature control; i.e., replacing Iω𝜂(𝒙, 𝑡) in (1.1) by

𝛾 + Iω (𝛾1(𝑡)𝜁1(𝒙, 𝛾(𝑡)) + · · · + 𝛾6(𝑡)𝜁6(𝒙, 𝛾(𝑡))).

While the physical localization of one actuator (which is here a constant function) is
lost in that case, achieving such a representation still extends considerably the existing
literature on degenerate controls for incompressible fluids.

Another interest of our work is to relax a topological constraint previously imposed
on the control region in [20], where the two-dimensional Navier–Stokes system with
physically localized finitely decomposable controls is considered. There, in order to
act on the velocity-average, the control zone is required to contain two cuts rendering
the torus simply-connected (e.g., the union of two strips with linearly independent
direction vectors). In the present article, by exploiting the buoyant force, coupling the
velocity and temperature in the momentum equation, we are able to take ω merely
as a horizontal strip. This observation indicates that heat effects in the mathematical
model might improve certain controllability properties.

1.3 Notations

Given any integer 𝑚 ≥ 0, several basic L2-based Sobolev spaces of average-free
functions and divergence-free vector fields are denoted by

Havg ≔

{
𝑓 ∈ L2(T2;R) |

∫
T2
𝑓 (𝒙) d𝒙 = 0

}
, Hdiv ≔

{
𝒇 ∈ L2(T2;R2) | ∇ · 𝒇 = 0

}
,

V𝑚 ≔ H𝑚(T2;R2) ∩ Hdiv, H𝑚 ≔ V𝑚 ∩ H2
avg, H𝑚 ≔ H𝑚(T2;R) ∩ Havg,

endowed with the norms

∥ · ∥𝑚 ≔

√︄ ∑︁
|𝜶 | ≤𝑚

∥𝜕𝜶 · ∥2
0, ∥ · ∥0 ≔ either ∥ · ∥L2 (T2;R) or ∥ · ∥L2 (T2;R2 ) ,

and the Lebesgue measure on the torus is assumed normalized: ∫T2 d𝒙 = 1. The
symbol 𝒪 refers to the Landau-big-O notation. If not specified otherwise, constants of
the form 𝐶 > 0 are unessential and their values may vary during estimates.

1.4 Main results

Throughout, we shall employ a universally fixed collection of so-called transported
Fourier modes 𝜁1, . . . , 𝜁6 ∈ L2((0, 1); C∞(T2;R)) as the building blocks for the
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controls described in (1.5); they shall be determined during the proof of Theorem 2.7
in a way only depending on ω (Figure 2), and their name is due to the involved
composition of usual Fourier modes with certain flow maps. More specifically, (cf. (2.7)
and (2.20))

{𝜁1, . . . , 𝜁6} = {𝜒, 𝜒′} ∪
{
(𝒙, 𝑡) ↦→ 𝜒(𝒙)𝜁 (U (Y (𝒙, 𝑡, 1), 1, 𝜎(𝑡))) | 𝜁 ∈ ℳ

}
,

where

• ℳ = {𝒙 ↦→ sin(𝑥1), 𝒙 ↦→ cos(𝑥1), 𝒙 ↦→ sin(𝑥2), 𝒙 ↦→ cos(𝑥2)},

• Y and U are the flows of incompressible vector fields from Section 2.1,

• 𝜎 : [0, 1] −→ [0, 1] is the function defined in (2.19),

• 𝒙 ↦→ 𝜒(𝑥2) is a smooth cutoff supported in ω introduced in Section 2.1.

Fix ω ⊂ T2 Construct
𝜁1, . . . , 𝜁6

Select 𝜈 > 0, 𝜏 > 0,
𝑇 > 0, 𝜀 > 0, 𝚽ext, 𝜓ext,
states (𝒖0, 𝜃0), (𝒖𝑇 , 𝜃𝑇 )

Obtain 𝛾, 𝛾, 𝛾1, . . . , 𝛾6.

Figure 2: The order in which the building blocks for our control force are chosen.

The global approximate controllability of (1.1) by means of a physically localized
temperature control is now stated as follows; its proof is concluded in Section 3.3.

Theorem 1.2. Let the integer 𝑟 ≥ 0, viscosity 𝜈 > 0, diffusivity 𝜏 > 0, control
time 𝑇 > 0, initial and target states 𝒖0, 𝒖𝑇 ∈ H𝑟 , 𝜃0, 𝜃𝑇 ∈ H𝑟 , external forces
(𝚽ext, 𝜓ext) ∈ L2((0, 𝑇); Hmax{𝑟 ,2} × Hmax{𝑟 ,2}), and the approximation error 𝜀 > 0
be fixed. There exists a control 𝜂 ∈ C∞( [0, 𝑇]; C∞(T2;R)) with supp(𝜂) ⊂ ω such
that the unique solution

𝒖 ∈ C0( [0, 𝑇]; V𝑟 ) ∩ L2((0, 𝑇); V𝑟+1),
𝜃 ∈ C0( [0, 𝑇]; H𝑟 (T2;R)) ∩ L2((0, 𝑇); H𝑟+1(T2;R))

to the Boussinesq problem (1.1) satisfies

∥𝒖(·, 𝑇) − 𝒖𝑇 ∥𝑟 + ∥𝜃 (·, 𝑇) − 𝜃𝑇 ∥𝑟 < 𝜀. (1.7)

The proof of Theorem 1.2 is a consequence of the following result on the global
approximate controllability of the Boussinesq system via physically localized finitely
decomposable controls; both theorems are proved in Section 3.3.

Theorem 1.3. Under the same assumptions as in Theorem 1.2, there exist control
parameters 𝛾, 𝛾, 𝛾1, . . . , 𝛾6 ∈ L2((0, 𝑇);R) such that the unique solution

𝒖 ∈ C0( [0, 𝑇]; V𝑟 ) ∩ L2((0, 𝑇); V𝑟+1),
𝜃 ∈ C0( [0, 𝑇]; H𝑟 (T2;R)) ∩ L2((0, 𝑇); H𝑟+1(T2;R))

to the problem (1.3) with 𝜂 and 𝜂 of the form (1.5) (or (1.6)) satisfies (1.7).

5



1.5 Related literature and outline

The recent decades have seen various studies concerned with controllability properties
of fluids exhibiting Boussinesq heat effects. A natural question – which remains in
most respects widely open – is whether these systems can be steered to a desired
state by merely applying external cooling or heating in a possibly small subset of the
domain. Let us subdivide previous research in that or related directions into three
categories.

1) When the controls enter all the evolution equations (or boundary conditions)
for the velocity and the temperature, there exists a rich body of literature. For
instance, several authors have invoked linearization techniques and then studied the
controllability of linear problems; e.g., see [13, 15] and the references therein, where
duality arguments, Carleman estimates, and local inversion theorems play crucial
roles. But, due to the nonlinear effects, the aforementioned results require initial and
target profiles that are sufficiently close in the state space. As a way to remove such
smallness constraints, hence to achieve global controllability properties, it was shown
that Coron’s return method (cf. [8]) can be applied: e.g., in [6,12,13] for both viscous
and inviscid Boussinesq systems. In this context, one should also name a famous
open problem posed by J.-L. Lions on the global approximate controllability of the
Navier–Stokes equations, in bounded 2D and 3D domains, with the no-slip boundary
condition (cf. [10, 17]).

2) When the controls only act in few components of the considered system,
less is known regarding its controllability. For the three-dimensional Navier–Stokes
equations with the no-slip boundary condition, the work [9] demonstrates the local
exact null controllability with controls vanishing in two components; even in periodic
domains, and for 2D configurations, the global exact null controllability through few
components in fixed time 𝑇 > 0 is an open problem (see also the bibliography of [9]
for related results). For the Boussinesq system in 𝑁 dimensions (𝑁 ≥ 2), the local
exact controllability to certain trajectories has been shown by using controls that act
only in 𝑁 − 1 directions, e.g., in [5, 11, 18].

3) Another important class of controls are those resembling finite combinations of
fixed actuators. For the Navier–Stokes equations, finite-dimensional controls can be
constructed via the Agrachev-Sarychev method [3] and its refinements, for instance,
as provided in [19, 21]. However, in these references, the controls are not physically
localized (they act everywhere in the torus); whether their localization in space is
possible constitutes an open problem due to Agrachev [2]. To achieve also physical
localization, we replaced in [20] the notion of finite-dimensional controls by that of
finitely decomposable ones, where some of the universally fixed actuators depend on
time. Here, as a byproduct, we extend these results to the 2D Boussinesq system. By
exploiting the temperature coupling, this leads now to additional improvements such as
reduced constraints on the control region (in [20], the controls are not supported in a
horizontal strip) and the possibility of using in the velocity equation a one-dimensional
control with one vanishing component.

This article contributes a first global (large data) controllability result for the
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Boussinesq system via physically localized controls acting only in the temperature.
Even more, the controls can be chosen finitely decomposable (of the type (1.5))
if one admits a one-dimensional control in the second component of the velocity
problem. But, up to an explicit feedback supported in ω, we can also steer the system
merely with a physically localized and finitely decomposable temperature control
(cf. (1.6)). Moreover, we allow prescribed external forces in the right-hand sides of
the Boussinesq problem. The main ingredients of our approach are as follows.

a) A multi-stage scaling procedure that combines two mechanisms: i) controlling
the fluid’s vorticity, but ignoring the temperature; ii) steering the temperature without
influencing the vorticity much. To this end, we develop ideas from [4, 20], and also
involve a version of Coron’s return method and hydrodynamic scaling from [7].

b) The physical localization of 𝜁1, . . . , 𝜁6 is achieved via careful rearrangements
of integrals that represent solutions to transport equations; in that way, we further
develop several of our ideas from [20].

Outline of the paper. As described in Section 3, the proofs of Theorems 1.2 and 1.3
reduce to controlling the vorticity, the temperature, and the average velocity. These
sub-goals are achieved by means of the following main steps (cf. Figure 3). A)
The temperature can be controlled without significantly changing the vorticity; see
Theorem 3.3. Hereto, preliminary constructions are presented in Section 2.1, finitely
decomposable controls (possibly supported everywhere) are obtained in Section 2.2
for linear equations, a localization procedure is carried out in Section 2.3, and a
hydrodynamic scaling is discussed in Section 3.1. B) As stated in Theorem 3.4, the
vorticity can be controlled through well-prepared initial conditions. C) The previous
arguments are put together in Theorem 3.7 for the vorticity-temperature formulation,
and in Section 3.3 for the velocity-temperature problem.

Theorem 3.7
(Controlling vorticity and temperature in arbitrary time)

Proof: Section 3.2

Theorems 1.2 and 1.3
(Main results)

Proofs: Section 3.3

Theorem 3.4
(Large initial data control, short time)

Proof: Section 3.2

Theorem 3.3
(Large additive control, short time)

Proof: Section 3.1

Theorem 2.7
(Localized control for linear problem)

Proof: Section 2.3

Figure 3: Subdivision of the proofs for Theorems 1.2 and 1.3.

2 Controls for linear transport type problems

This section concerns linear transport problems driven by finitely decomposable
controls. We first obtain controls supported in T2, then further localize them in ω.
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2.1 Preliminary constructions

This section aims to collect several technical definitions that are required subsequently.

2.1.1 Partition of the torus

Select 0 < 𝐻1 < 𝐻2 < 2𝜋 in a way that T × [𝐻1, 𝐻2] ⊂ ω. Then, a number 𝐾 ∈ N is
chosen such that

𝑙𝐾 ≔
8𝜋
3𝐾

<
𝐻2 − 𝐻1

3
.

As illustrated in Figure 4, the torus T2 may thus be covered by a family of overlapping
strips (O𝑖)𝑖∈{1,...,𝐾 } having fixed overlap length 𝑙𝐾/4 and being translated copies of
the reference strip

O ≔ T × (𝐻1 + 𝑙𝐾 , 𝐻1 + 2𝑙𝐾 ) ⊂ ω.

For definiteness, let us take

O𝑖 ≔ T ×
(
3(𝑖 − 1)𝑙𝐾

4
,

3(𝑖 − 1)𝑙𝐾
4

+ 𝑙𝐾
)
, 𝑖 ∈ {1, . . . , 𝐾}.

On this basis, a reference cutoff function 𝜒 ∈ C∞(T2; [0, 1]) with supp(𝜒) ⊂ O is
specified via

𝜒(𝒙) = 𝜒(𝑥2) ≔ 𝜇(𝑥2 − 𝐻1 − 𝑙𝐾 ), 𝒙 = [𝑥1, 𝑥2]⊤ ∈ T2, (2.1)

where 𝜇 ∈ C∞(T; [0, 1]) satisfies

supp(𝜇) ⊂ (0, 𝑙𝐾 ), ∀𝑥 ∈ (0, 𝑙𝐾/4) : 𝜇(𝑥) + 𝜇(𝑥 + 3𝑙𝐾/4) = 1,
𝜇(𝑠) = 1 ⇐⇒ 𝑠 ∈ [𝑙𝐾/4, 3𝑙𝐾/4] .

(2.2)

2.1.2 Convection strategy

For the purpose of localizing in Section 2.3 certain controls for linear transport
problems in the control zone ω, a spatially constant vector field is now constructed so
that all its associated integral curves pass through ω in a specific way. This profile will
enable us later to utilize Coron’s return method (cf. [8]); we already introduced similar
constructions in [20]. To begin with, the reference time interval [0, 1] is equidistantly
partitioned into subintervals of length 𝑇Δ > 0 by means of

0 < 𝑡0𝑐 < 𝑡1𝑎 < 𝑡1𝑏 < 𝑡
1
𝑐 < 𝑡

2
𝑎 < 𝑡

2
𝑏 < 𝑡

2
𝑐 < · · · < 𝑡𝐾𝑎 < 𝑡𝐾𝑏 < 𝑡𝐾𝑐 < 1, (2.3)

where 𝑡0𝑐 = 𝑡𝑖𝑎 − 𝑡𝑖−1
𝑐 = 𝑡𝑖𝑐 − 𝑡𝑖𝑏 = 𝑡𝑖

𝑏
− 𝑡𝑖𝑎 = 1 − 𝑡𝐾𝑐 = 𝑇Δ for all 𝑖 ∈ {1, . . . , 𝐾}.

Theorem 2.1. There exists a function 𝑡 ↦→ 𝒚(𝑡) = [0, 𝑦2(𝑡)] ∈ C∞
0 ((0, 1);R2) that

satisfies together with its flow Y, which is obtained by solving

dY
d𝑡

(𝒙, 𝑠, 𝑡) = 𝒚(𝑡), Y (𝒙, 𝑠, 𝑠) = 𝒙, (2.4)

the three properties listed below.
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O1

O2

O3

O4

O5

O6

Reference strip O

Figure 4: An exemplary open covering of T2 by 𝐾 = 6 overlapping strips O1, . . . ,O6, the boundaries
of which are in an alternating way depicted as solid, dashed, and dotted lines. The overlapping region
due to vertical periodicity is highlighted by a dotted pattern. The reference strip O contained inside the
control region is displayed as a (red) filled rectangle.

• Supported in [𝑡0𝑐, 𝑡𝐾𝑐 ]: ∀𝑡 ∈ [0, 𝑡0𝑐] ∪ [𝑡𝐾𝑐 , 1] : 𝒚(𝑡) = 0.

• Closed integral curves: ∀𝒙 ∈ T2 : Y (𝒙, 0, 1) = 𝒙.

• Stationary visits of O: ∀𝑖 ∈ {1, . . . , 𝐾}, ∀𝑡 ∈ [𝑡𝑖𝑎, 𝑡𝑖𝑏] : Y (O𝑖 , 0, 𝑡) = O.

Proof. The argument goes along the lines of [20, Theorem 3.3]. First, a collection of
functions (𝛽𝑖)𝑖∈{1,...,𝐾 } ⊂ C∞

0 ((0, 𝑇Δ);R) is chosen in a way that

O𝑖 + 𝒆grav

∫ 𝑇Δ

0
𝛽𝑖 (𝑠) d𝑠 = O.

Subsequently, for any 𝑖 ∈ {1, . . . , 𝐾}, a profile 𝒉𝑖 ∈ C∞
0 ((0, 3𝑇Δ);R2) is piece-wise

defined by means of

𝒉𝑖 (𝑡) =


𝛽𝑖 (𝑡)𝒆grav if 𝑡 ∈ [0, 𝑇Δ],
0 if 𝑡 ∈ (𝑇Δ, 2𝑇Δ),
−𝛽𝑖 (𝑡 − 2𝑇Δ)𝒆grav if 𝑡 ∈ [2𝑇Δ, 3𝑇Δ] .

Finally, after integrating (2.4), it follows that the profile

𝒚(𝑡) ≔
{

0 if 𝑡 ∈ [0, 𝑡0𝑐] ∪ [𝑡𝐾𝑐 , 1],
𝒉𝑖 (𝑡 − (3𝑖 − 2)𝑇Δ) if 𝑡 ∈ (𝑡𝑖−1

𝑐 , 𝑡𝑖𝑐) for 𝑖 ∈ {1, . . . , 𝐾}

satisfies the desired properties. □

2.1.3 A generating vector field

Let us setup some terminology that will be required later in Section 2.2. A key
ingredient is the following observability notion, which has been introduced in [16] for
the study of mixing properties of randomly forced PDEs.
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Definition 2.2. Given any 𝑇 > 0 and 𝑛 ∈ N, a family (𝜙 𝑗) 𝑗∈{1,...,𝑛} ⊂ L2((0, 𝑇);R)
is said to be observable if

∀ I ∈ {subintervals of (0, 𝑇)}, ∀ (𝑎 𝑗) 𝑗∈{1,...,𝑛} ⊂ C1(I;R), ∀ 𝑏 ∈ C0(I;R) :

𝑏 +
𝑛∑︁
𝑗=1
𝑎 𝑗𝜙 𝑗 = 0 in L2(I;R) =⇒ ∀𝑡 ∈ I : 𝑏(𝑡) = 𝑎1(𝑡) = · · · = 𝑎𝑛 (𝑡) = 0.

Remark 2.3. Observable families in the sense of Definition 2.2 can be constructed in
an explicit way; e.g., see [19, Section 3.3] or [20] for more details.

Let (𝜙𝑙)𝑙∈{1,...,4} ⊂ L2((0, 1);R) be observable, and take 𝜙 ∈ C1( [0, 1];R) such
that 𝜙(𝑡) = 0 if and only if 𝑡 = 1. Furthermore, define the family

(𝜓𝑙)𝑙∈{1,...,4} ⊂ W1,2((0, 1);R), ∀𝑙 ∈ {1, . . . , 4} : 𝜓𝑙 (𝑡) ≔ 𝜙(𝑡)
∫ 𝑡

0
𝜙𝑙 (𝑠) d𝑠.

Then, a “generating” divergence-free vector field 𝒖 ∈ W1,2((0, 1); C∞(T2;R2)) is
given via (cf. [20, Section 3.4])

𝒖(𝒙, 𝑡) ≔
[
𝜓1(𝑡) sin(𝑥2) + 𝜓2(𝑡) cos(𝑥2)
𝜓3(𝑡) sin(𝑥1) + 𝜓4(𝑡) cos(𝑥1)

]
,

and its flow U solves

dU
d𝑡

(𝒙, 𝑠, 𝑡) = 𝒖(U (𝒙, 𝑠, 𝑡), 𝑡), U (𝒙, 𝑠, 𝑠) = 𝒙.

Here, the term “generating” expresses that such vector fields are able to induce all
desired directions via finite-dimensional controls, as demonstrated in, e.g., [19, 20].

2.2 Degenerate non-localized controls

Let 𝒚 with flow Y and 𝒖 with flow U be as introduced in Sections 2.1.2 and 2.1.3,
respectively. To begin with, we state the following result whose proof is straightforward.

Lemma 2.4. Given 𝑚 ∈ N and 𝒃 ∈ C0( [0, 1]; C𝑚(T2;R2)), the linear operator which
associates to any prescribed force 𝑔 ∈ L2((0, 1); H𝑚(T2;R)) the unique solution
𝑣 ∈ C0( [0, 1]; H𝑚(T2;R)) to the transport equation

𝜕𝑡𝑣 + (𝒃 · ∇)𝑣 = 𝑔, 𝑣(·, 0) = 0

maps continuously from L2((0, 1); H𝑚(T2;R)) to C0( [0, 1]; H𝑚(T2;R)).

Next, a recent result from [20] is recalled concerning finite-dimensional controls
for linear transport equations with a generating drift as defined above in Section 2.1.3.
Hereby, as already anticipated in Section 1.4, we denote the four-dimensional function
space

H0 = spanRℳ, ℳ = {sin(𝑥1), cos(𝑥1), sin(𝑥2), cos(𝑥2)}. (2.5)
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The following theorem can be verified by adopting [19, Section 2.3] (written there for
3D) to the 2D case; see [20] for specific details. Hereby, if desired, the control can be
selected in continuous dependence on (𝑣1, 𝜃1) following a compactness argument as
explained in [19, Proof of Theorem 2.3] or [16, Proposition 2.6].

Theorem 2.5. Given any 𝑚 ∈ N, 𝑧1 ∈ H𝑚, and 𝜀 > 0, there exists 𝑔 ∈ L2((0, 1);H0)
such that the unique solution 𝑧 ∈ C0( [0, 1]; H𝑚) ∩ W1,2((0, 1); H𝑚−1) to the linear
transport problem

𝜕𝑡 𝑧 + (𝒖 · ∇)𝑧 = 𝑔, 𝑧(·, 0) = 0 (2.6)

obeys
∥𝑧(·, 1) − 𝑧1∥𝑚 < 𝜀.

In addition, given a bounded subset B ⊂ H𝑚, there exists a continuous linear
operator C𝜀 which assigns to each 𝑧1 ∈ B a control 𝑔 ∈ L2((0, 𝑇);H0) such that the
corresponding solution 𝑧 to (2.6) satisfies ∥𝑧(·, 1) − 𝑧1∥𝑚−1 < 𝜀.

Now, we consider a linearized Boussinesq system driven by degenerate controls
that are potentially supported everywhere in T2. To prepare the localization procedure
carried out later in Section 2.3, convection will now be realized along 𝒚, and a finite
family of transported Fourier modes {𝜁1, . . . , 𝜁4} ⊂ L2((0, 1); C∞(T2;R)) shall be
involved instead of H0; namely, we enumerate

{𝜁1, . . . , 𝜁4} =
{
(𝒙, 𝑡) ↦→ 𝜁 (U (Y (𝒙, 𝑡, 1), 1, 𝑡))

��� 𝜁 ∈ ℳ

}
. (2.7)

The definition in (2.7) is motivated by the proof of the following theorem.

Theorem 2.6. For any 𝑚 ∈ N, 𝜃1 ∈ H𝑚(T2;R), and 𝜀 > 0, there exist control
parameters 𝛼1, . . . , 𝛼4 ∈ L2((0, 1);R) such that the unique solution

𝜃 ∈ C0( [0, 1]; H𝑚(T2;R)) ∩ W1,2((0, 1); H𝑚−1(T2;R))

to the linear problem

𝜕𝑡𝜃 + (𝒚 · ∇)𝜃 = 𝑔 ≔

4∑︁
𝑙=1

𝛼𝑙𝜁𝑙, 𝜃 (·, 0) = 0 (2.8)

obeys
∥𝜃 (·, 1) − 𝜃1∥𝑚 < 𝜀 (2.9)

and the control’s space-time average vanishes:∫ 1

0

∫
T2
𝑔(𝒙, 𝑠) d𝒙d𝑠 = 0. (2.10)

Moreover, given a bounded subset B ⊂ H𝑚(T2;R), there exists a continuous linear
operator assigning to each 𝜃1 ∈ B a choice of 𝛼1, . . . , 𝛼4 ∈ L2((0, 1);R) such that
the solution 𝜃 to (2.8) satisfies ∥𝜃 (·, 1) − 𝜃1∥𝑚−1 < 𝜀.
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Proof. By resorting to Theorem 2.5, we select 𝑔 ∈ L2((0, 1);H0) verifying the
controllability problem

𝜕𝑡𝜃 + (𝒖 · ∇)𝜃 = 𝑔, 𝜃 (·, 0) = 0, ∥𝜃 (·, 1) − 𝜃1∥𝑚 < 𝜀.

If B ⊂ H𝑚(T2;R) is bounded with 𝜃1 ∈ B, we can assume that 𝑔 is the image
of 𝜃1 under a bounded linear operator C𝜀 , as provided by Theorem 2.5. Since 𝒚 is
given by Theorem 2.1, and the associated flow Y is, like U, volume preserving, the
functions

𝜃 (𝒙, 𝑡) ≔
∫ 𝑡

0
𝑔(Y (𝒙, 𝑡, 𝑠), 𝑠) d𝑠, 𝑔(𝒙, 𝑡) ≔ 𝑔(U (Y (𝒙, 𝑡, 1), 1, 𝑡), 𝑡)

obey
𝜕𝑡𝜃 + (𝒚 · ∇)𝜃 = 𝑔, 𝜃 (·, 0) = 0, 𝜃 (·, 1) = 𝜃 (·, 1),

and it holds ∫
T2
(𝑔 − 𝑔) (𝒙, 𝑠) d𝒙 = 0

for almost all 𝑠 ∈ [0, 1]. □

2.3 Localized temperature controls

The control obtained via Theorem 2.6 is now transformed into one that is physically
localized in ω. This new control will be given in terms of 6 fixed profiles that are
independent of all data – except the control region ω – imposed in Theorem 1.2.
Hereto, let us recall that 𝒚 = [0, 𝑦2]⊤ from Theorem 2.1 only depends on time and is
compactly supported in (0, 1).

Theorem 2.7. There exist profiles 𝜁1, . . . , 𝜁6 ∈ L2((0, 1); C∞(T2;R)) that depend
only on the control region ω, and for which the following statement holds. Given any
𝑚 ∈ N, 𝜃1 ∈ H𝑚, and 𝜀 > 0, there are parameters 𝛼1, . . . , 𝛼6 ∈ L2((0, 1);R) such
that the unique solution

Θ ∈ C0( [0, 1]; H𝑚) ∩ W1,2((0, 1); H𝑚−1)

to the linear problem

𝜕𝑡Θ + (𝒚 · ∇)Θ = Iω𝜂, Θ(·, 0) = 0, (2.11)

where

𝜂 ≔

6∑︁
𝑙=1

𝛼𝑙𝜁𝑙 ∈ L2((0, 1); C∞(T2;R)),
∫
T2
𝜂(𝒙, ·) d𝒙 = 0 a.e., (2.12)

satisfies
∥Θ(·, 1) − 𝜃1∥𝑚 < 𝜀. (2.13)

In addition, given a bounded subset B ⊂ H𝑚, there exists a continuous linear operator,
denoted as C𝜀 : H𝑚 −→ L2((0, 1);R)6, assigning to each state 𝜃1 ∈ B parameters
𝛼1, . . . , 𝛼6 such that the solution Θ to (2.6) obeys ∥Θ(·, 1) − 𝜃1∥𝑚−1 < 𝜀.
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Proof. Let 𝛼̃1, . . . , 𝛼̃4 ∈ L2((0, 1);R), and the corresponding solution 𝜃 to (2.8), be
fixed by applying Theorem 2.6 with target state 𝜃1 ∈ H𝑚(T2;R) such that

∥𝜃 (·, 1) − 𝜃1∥𝑚 < 𝜀.

In the case that 𝜃1 is from B, we select 𝛼̃1, . . . , 𝛼̃4 ∈ L2((0, 1);R) as the image of 𝜃1
under a bounded linear operator, while ensuring ∥𝜃 (·, 1) − 𝜃1∥𝑚−1 < 𝜀.

Step 1. Definition of a localized control. Let us recall from (2.3) the partition of
the reference time interval (0, 1) with uniform spacing

0 < 𝑡0𝑐 < 𝑡1𝑎 < 𝑡1𝑏 < 𝑡
1
𝑐 < 𝑡

2
𝑎 < 𝑡

2
𝑏 < 𝑡

2
𝑐 < · · · < 𝑡𝐾𝑎 < 𝑡𝐾𝑏 < 𝑡𝐾𝑐 < 1.

The force 𝑔 ≔
∑4
𝑙=1 𝛼̃𝑙𝜁𝑙 , obtained above via Theorem 2.6, is now transformed into a

new control 𝑓 supported in ω. More specifically, we define

𝑓 (𝒙, 𝑡) ≔ 𝜒(𝑥2)
𝐾∑︁
𝑘=1

1
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

I[𝑡𝑘𝑎 ,𝑡𝑘𝑏 ] (𝑡)𝑔
(
Y

(
𝒙, 𝑡,

𝑡 − 𝑡𝑘𝑎
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)
,
𝑡 − 𝑡𝑘𝑎
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)
(2.14)

and then demonstrate that the solution 𝜃# to

𝜕𝑡𝜃
# + (𝒚 · ∇)𝜃# = 𝑓 , 𝜃#(·, 0) = 0 (2.15)

satisfies ∥𝜃#(·, 1) − 𝜃1∥𝑚 < 𝜀, or ∥𝜃#(·, 1) − 𝜃1∥𝑚−1 < 𝜀 if 𝛼̃1, . . . , 𝛼̃4 are chosen to
depend continuously on 𝜃1 from the bounded set B.

Step 2. Checking approximate controllability. Since 𝜃 obeys (2.8), and recalling
that Y is the flow associated with 𝒚 from Theorem 2.1, one finds

𝜃 (𝒙, 1) =
∫ 1

0
𝑔(Y (𝒙, 0, 𝑟), 𝑟) d𝑟. (2.16)

Thus, in view of 𝑓 ’s definition in (2.14), the properties of 𝜒 and Y (cf. (2.1), (2.2),
and Theorem 2.1) imply

𝜃 (𝒙, 1) =
𝐾∑︁
𝑘=1

∫ 1

0
𝜒

(
Y

(
𝒙, 0, 𝑟 (𝑡𝑘𝑏 − 𝑡

𝑘
𝑎) + 𝑡𝑘𝑎

))
𝑔(Y (𝒙, 0, 𝑟), 𝑟) d𝑟

=

𝐾∑︁
𝑘=1

1
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

∫ 1

0
I[𝑡𝑘𝑎 ,𝑡𝑘𝑏 ] (𝑠)𝜒(Y (𝒙, 0, 𝑠))𝑔

(
Y

(
𝒙, 0,

𝑠 − 𝑡𝑘𝑎
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)
,
𝑠 − 𝑡𝑘𝑎
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)
d𝑠

=

∫ 1

0
𝑓 (Y (𝒙, 0, 𝑠), 𝑠) d𝑠,

(2.17)

where we used for 𝑘 ∈ {1, . . . , 𝐾} the substitutions 𝑟 = (𝑠 − 𝑡𝑘𝑎) (𝑡𝑘𝑏 − 𝑡
𝑘
𝑎)−1. Therefore,

the unique solution 𝜃# to the problem (2.15) satisfies 𝜃#(·, 1) = 𝜃 (·, 1).
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Step 3. Average corrections. In view of the equation for 𝜃# in (2.15), and by
employing (2.10), (2.16), and (2.17) together with the fact that Y is volume preserving,
it follows that∫

T2
𝜃#(𝒛, 𝑡) d𝒛 =

∫ 𝑡

0

∫
T2
𝑓 (𝒛, 𝑠) d𝒛d𝑠,

∫ 1

0

∫
T2
𝑓 (𝒛, 𝑠) d𝒛 d𝑠 = 0,

where 𝑓 is the function from (2.14). Now, we define

Θ(𝑥1, 𝑥2, 𝑡) ≔ 𝜃#(𝑥1, 𝑥2, 𝑡) −
𝜒(𝑥2)

∫ 𝑡
0

∫
T2 𝑓 (𝒛, 𝑠) d𝒛d𝑠∫

T2 𝜒(𝒛) d𝒛
.

In particular, we have Θ(·, 0) = 𝜃#(·, 0) and Θ(·, 1) = 𝜃#(·, 1), and Θ satisfies (2.11)
with the control

𝜂(𝑥1, 𝑥2, 𝑡) ≔ 𝑓 (𝑥1, 𝑥2, 𝑡) −
𝑦2𝜒

′(𝑥2)
∫ 𝑡

0

∫
T2 𝑓 (𝒛, 𝑠) d𝒛d𝑠 − 𝜒(𝑥2)

∫
T2 𝑓 (𝒛, 𝑡) d𝒛∫

T2 𝜒(𝒛) d𝒛
(2.18)

of the form (2.12). Moreover, Θ satisfies the controllability condition (2.13), or
∥Θ(·, 1) − 𝜃1∥𝑚−1 < 𝜀 if 𝛼̃1, . . . , 𝛼̃4 are chosen in continuous dependence on 𝜃1 from
the bounded set B.

Step 4. Structure of the control. It remains to name the profiles 𝜁1, . . . , 𝜁6 that
where implicitly described during the preceding steps. To this end, the function 𝑓

from (2.14) is expressed by means of

𝑓 (𝒙, 𝑡) = 𝜒(𝑥2)
𝐾∑︁
𝑘=1

1
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

I[𝑡𝑘𝑎 ,𝑡𝑘𝑏 ] (𝑡)𝑔
(
Y

(
𝒙, 𝑡,

𝑡 − 𝑡𝑘𝑎
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)
,
𝑡 − 𝑡𝑘𝑎
𝑡𝑘
𝑏
− 𝑡𝑘𝑎

)
=

𝐾∑︁
𝑘=1

𝜒(𝑥2)I[𝑡𝑘𝑎 ,𝑡𝑘𝑏 ] (𝑡)

𝑡𝑘
𝑏
− 𝑡𝑘𝑎

𝑔 (Y (𝒙, 𝑡, 𝜎(𝑡)) , 𝜎(𝑡)) ,

where

𝜎(𝑡) ≔
𝐾∑︁
𝑙=1

I[𝑡𝑙𝑎 ,𝑡𝑙𝑏 ]
(𝑡) 𝑡 − 𝑡

𝑙
𝑎

𝑡𝑙
𝑏
− 𝑡𝑙𝑎

. (2.19)

Finally, after recalling the definition of 𝜁1, . . . , 𝜁4 in (2.7), we take 𝜁1, . . . , 𝜁6 as any
enumeration of the set (in Section 1.2 we denoted 𝜁1 = 𝜒 and 𝜁2 = 𝜒′)

{𝜒, 𝜒′} ∪
{
(𝒙, 𝑡) ↦→ 𝜒(𝑥2)𝜁𝑖 (U (Y (𝒙, 𝑡, 1), 1, 𝜎(𝑡))) | 𝑖 ∈ {1, . . . , 4}

}
. (2.20)

The parameters 𝛼1, . . . , 𝛼6 ∈ L2((0, 1);R) are then determined from the above choice
of 𝛼̃1, . . . , 𝛼̃4 and the definition of 𝜂 in (2.18). When the target 𝜃1 varies in a bounded
set of H𝑚, the formulas (2.14) and (2.18) allow taking 𝛼̃1, . . . , 𝛼̃6 as the image of 𝜃1
under a bounded linear operator. Because 𝜒, Y, U, and 𝜎 are universal objects for
fixed ω, the set in (2.20) is not affected by the choice of the initial and target states, the
viscosity, the thermal diffusivity, the external forces, and also not by the approximation
error specified in Theorems 1.2 and 1.3.

□
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3 Proofs of the main results

To avoid for simplicity the discussion of weak notions of solutions, we assume without
loss of generality that 𝑟 ≥ 2 in Theorems 1.2 and 1.3. Indeed, if it would hold 𝑟 < 2,
and given that (𝚽ext, 𝜓ext) ∈ L2((0, 𝑇); H2 × H2), the corresponding uncontrolled
trajectory naturally regularizes due to the known parabolic smoothing effects, and
after any short time assumes states in H2 × H2, which can be taken as the new initial
data.

Owing to classical elliptic regularity estimates (cf. (3.4) below), for proving Theo-
rems 1.2 and 1.3 it suffices to determine control forces 𝜂, 𝜂 ∈ L2((0, 𝑇); C∞(T2;R))
of the type (1.5) that ensure an estimate of the form

∥∇ ∧ 𝒖(·, 𝑇) − ∇ ∧ 𝒖𝑇 ∥𝑟−1 + ∥𝜃 (·, 𝑇) − 𝜃𝑇 ∥𝑟 +
����∫

T2
𝒖(𝒙, 𝑇) d𝒙

���� < 𝜀, (3.1)

where ∇ ∧ 𝒖 ≔ 𝜕1𝑢2 − 𝜕2𝑢1 is the curl of 𝒖 and 𝜀 > 0 is the approximation accuracy
selected in Theorems 1.2 and 1.3.

Vorticity-temperature formulation. For initial data (𝒖0, 𝜃0) ∈ H𝑟 × H𝑟 and pre-
scribed forces (𝚽ext, 𝜓ext) ∈ L2((0, 𝑇); H𝑟 ×H𝑟 ), let (𝒖, 𝜃, 𝑝) be the solution to (1.1),
and denote the vorticity 𝑤 = ∇ ∧ 𝒖. Then, the triple (𝒖, 𝑤, 𝜃) satisfies in T2 × (0, 𝑇)
the problem

𝜕𝑡𝑤 − 𝜈Δ𝑤 + (𝒖 · ∇) 𝑤 = 𝜕1𝜃 + 𝜑ext, 𝜕𝑡𝜃 − 𝜏Δ𝜃 + (𝒖 · ∇)𝜃 = Iω𝜂 + 𝜓ext,

∇ ∧ 𝒖 = 𝑤, ∇ · 𝒖 = 0, 𝑤(·, 0) = 𝑤0, 𝜃 (·, 0) = 𝜃0,
(3.2)

where 𝑤0 = ∇∧ 𝒖0 and 𝜑ext = ∇∧𝚽ext. Vice versa, if (𝒖, 𝑤, 𝜃) solves (3.2) and obeys
∫T2 𝑢2(𝒙, 𝑡) d𝒙 = ∫ 𝑡0 ∫T2 𝜃 (𝒙, 𝑠) d𝒙d𝑠 for all 𝑡 ∈ [0, 𝑇], one can recover the pressure 𝑝,
uniquely up to an additive constant depending on time, such that (𝒖, 𝜃, 𝑝) is a solution
to (1.1); e.g., see [22].

Inverting the curl operator. Given any 𝑚 ∈ N, let 𝚼 : H𝑚−1 × R2 −→ V𝑚 be the
following solenoidal realization of (∇ ∧ )−1: for elements 𝑧 ∈ H𝑚−1 and 𝑨 ∈ R2, the
vector field 𝚼(𝑧, 𝑨) ∈ V𝑚 is defined as the unique solution to the planar div-curl
problem

∇ ∧ 𝚼(𝑧, 𝑨) = 𝑧, ∇ · 𝚼(𝑧, 𝑨) = 0,
∫
T2
𝚼(𝑧, 𝑨) (𝒙) d𝒙 = 𝑨. (3.3)

In fact, one has the representation

𝚼(𝑧, 𝑨) = ∇⊥𝜓 + 𝑨, ∇⊥𝜓 ≔ [𝜕2𝜓,−𝜕1𝜓]⊤,

where the stream function 𝜓 solves Poisson’s equation Δ𝜓 = −𝑧. Then, by the elliptic
theory for the Laplacian, there exists a constant 𝐶0 > 0 such that

∥𝚼(𝑧, 𝑨)∥𝑚 ≤ 𝐶0(∥𝑧∥𝑚−1 + |𝑨|) (3.4)

for all 𝑧 ∈ H𝑚−1 and 𝑨 ∈ R2.
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3.1 Well-posedness and hydrodynamic scaling

We recall that, like the Navier–Stokes system in 2D, the two-dimensional Boussinesq
system is globally well-posed in the space

X𝑚𝑇 ≔ A𝑚−1
𝑇 × A𝑚

𝑇 , ∥( 𝑓 , 𝑔)∥X𝑚
𝑇
≔ ∥ 𝑓 ∥A𝑚−1

𝑇
+ ∥𝑔∥A𝑚

𝑇
,

where 𝑚 ∈ N and A𝑚
𝑇
≔ C0( [0, 𝑇]; H𝑚(T2;R))∩L2((0, 𝑇); H𝑚+1(T2;R)) is endowed

with ∥ · ∥A𝑚
𝑇
≔ ∥ · ∥C0 ( [0,𝑇 ];H𝑚 (T2;R) ) + ∥ · ∥L2 ( (0,𝑇 );H𝑚+1 (T2;R) ) .

The following well-posedness result can be shown by analysis similar to the
incompressible Navier–Stokes system; e.g., see [22].

Proposition 3.1. Given arbitrary initial states (𝑤0, 𝜃0) ∈ H𝑚−1 ×H𝑚(T2;R), external
forces (ℎ1, ℎ2) ∈ L2((0, 𝑇); H𝑚−2 ×H𝑚−1(T2;R)), and average 𝑨 ∈ W1,2((0, 𝑇);R2),
there exists a unique solution (𝑤, 𝜃) ∈ X𝑚

𝑇
to the Boussinesq system in vorticity-

temperature form

𝜕𝑡𝑤 − 𝜈Δ𝑤 + (𝒖 · ∇) 𝑤 = 𝜕1𝜃 + ℎ1, 𝜕𝑡𝜃 − 𝜏Δ𝜃 + (𝒖 · ∇) 𝜃 = ℎ2,

𝒖(·, 𝑡) = 𝚼 (𝑤, 𝑨) , 𝑤(·, 0) = 𝑤0, 𝜃 (·, 0) = 𝜃0.
(3.5)

The resolving operator 𝑆𝑇 associated with (3.5) is the mapping

H𝑚−1 × H𝑚(T2;R) × L2((0, 𝑇); H𝑚−2 × H𝑚−1(T2;R)) × W1,2((0, 𝑇);R2) −→ X𝑚𝑇 ,
(𝑤0, 𝜃0, ℎ1, ℎ2, 𝑨) ↦−→ 𝑆𝑇 (𝑤0, 𝜃0, ℎ1, ℎ2, 𝑨) ≔ (𝑤, 𝜃).

The next result relates the solutions to (3.2) at a small time with the solutions to
linear transport problems with drift 𝒚 at time 𝑡 = 1. This approach is inspired by [7]
and the present version particularly builds on the recent works [19, 20].

Theorem 3.2. Given 𝑇 > 0, 𝑚 ≥ 2, let initial states (𝑤0, 𝜃0) ∈ H𝑚 × H𝑚+1 and
external forces (𝜑ext, 𝜓ext) ∈ L2((0, 𝑇); H𝑚−2 × H𝑚−1) be arbitrarily fixed. Moreover,
denote by (𝑣𝛿 , 𝜗𝛿)𝛿∈ (0,1) the solution family to the linear transport problems

𝜕𝑡𝑣𝛿 + (𝒚 · ∇)𝑣𝛿 = 𝜕1𝜗𝛿 , 𝜕𝑡𝜗𝛿 + (𝒚 · ∇)𝜗𝛿 = 𝜂𝛿 ,
𝑣𝛿 (·, 0) = 𝑤0, 𝜗𝛿 (·, 0) = 𝛿𝜃0,

(3.6)

where 𝒚 is the vector field from Theorem 2.1 and 𝜂𝛿 ⊂ L2((0, 1); C∞(T2;R)) is
chosen in a way that∫

T2
𝜂𝛿 (𝒙, ·) d𝒙 = 0 a.e., sup

𝑡∈[0,1]
∥𝜗𝛿 (·, 𝑡)∥𝑚+1 = 𝒪(𝛿) as 𝛿 −→ 0. (3.7)

Then, one has the convergence

lim
𝛿→0

∥𝑆𝛿 (𝑤0, 𝜃0, 𝜑ext, 𝜓ext + 𝐻𝛿 , 𝒚 𝛿) |𝑡=𝛿 − (𝑣𝛿 , 𝛿−1𝜗𝛿) (·, 1)∥H𝑚−1×H𝑚 (T2;R) = 0,

where
𝐻𝛿 (·, 𝑡) ≔ 𝛿−2𝜂𝛿 (·, 𝛿−1𝑡), 𝒚 𝛿 (𝑡) ≔ 𝛿−1𝒚(𝛿−1𝑡),

uniformly with respect to (𝜑ext, 𝜓ext) from bounded subsets of L2((0, 𝑇); H𝑚−2×H𝑚−1).
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Proof. For any 𝛿 ∈ (0, 1), let (𝑤, 𝜃) ∈ X𝑚
𝛿

be the solution to the nonlinear prob-
lem (3.2) driven by 𝐻𝛿 , and with velocity average 𝒚 𝛿 . Namely, we take (𝑤, 𝜃) =

𝑆𝛿 (𝑤0, 𝜃0, 𝜑ext, 𝜓ext + 𝐻𝛿 , 𝒚 𝛿), with associated velocity 𝒖 = 𝚼
(
𝑤, 𝒚 𝛿

)
, where the

div-curl solution operator 𝚼 is defined via (3.3). Then, we make an ansatz of the form

𝑤 = 𝑧𝛿 + 𝑟, 𝒖 = 𝒚 𝛿 + 𝒁𝛿 + 𝑹, 𝜃 = 𝜃 𝛿 + 𝑠, (3.8)

where

𝑧𝛿 (·, 𝑡) ≔ 𝑣𝛿 (·, 𝛿−1𝑡), 𝜃 𝛿 (·, 𝑡) ≔ 𝛿−1𝜗𝛿 (·, 𝛿−1𝑡), 𝒁𝛿 ≔ 𝚼(𝑧𝛿 , 0), 𝑹 ≔ 𝚼(𝑟, 0).

The theorem will be proved by showing that

∥𝑟 (·, 𝛿)∥𝑚−1 + ∥𝑠(·, 𝛿)∥𝑚 −→ 0 as 𝛿 −→ 0, (3.9)

uniformly for (𝜑ext, 𝜓ext) from bounded subsets of L2((0, 1); H𝑚−2 × H𝑚−1).

Step 1. Description of remainders. By plugging the ansatz (3.8) into the equa-
tion (3.2) satisfied by (𝑤, 𝜃), one finds that 𝑟 and 𝑠 solve the evolutionary system

𝜕𝑡𝑟 − 𝜈Δ𝑟 +
(
(𝒚 𝛿 + 𝒁𝛿 + 𝑹) · ∇

)
𝑟 + (𝑹 · ∇)𝑧𝛿 = Ξ𝛿 + 𝜕1𝑠,

𝜕𝑡 𝑠 − 𝜏Δ𝑠 +
(
(𝒚 𝛿 + 𝒁𝛿 + 𝑹) · ∇

)
𝑠 + (𝑹 · ∇)𝜃 𝛿 = Λ𝛿

(3.10)

with initial conditions 𝑟 (·, 0) = 𝑠(·, 0) = 0, and where

Ξ𝛿 ≔ 𝜑ext − (𝒁𝛿 · ∇)𝑧𝛿 + 𝜈Δ𝑧𝛿 , Λ𝛿 ≔ 𝜓ext − (𝒁𝛿 · ∇)𝜃 𝛿 + 𝜏Δ𝜃 𝛿 .

Moreover, one has the elliptic estimates (cf. (3.4))

∥𝑹(·, 𝑡)∥𝑚 ≤ 𝐶0∥𝑟 (·, 𝑡)∥𝑚−1, ∥𝒁𝛿 (·, 𝑡)∥𝑚 ≤ 𝐶0∥𝑧𝛿 (·, 𝑡)∥𝑚−1, 𝑡 ∈ [0, 𝛿] . (3.11)

Step 2. A priori estimates. Since the vorticity-temperature coupling in (3.2) is
linear, and due to the dissipation of both 𝑤 and 𝜃, the subsequent estimates are similar
to those provided in a related context for the Navier–Stokes system by [20, Proof of
Lemma 5.5] and [19, Proposition 2.2]. That is, after formally multiplying in (3.10)
with (−Δ)𝑚−1𝑟 and (−Δ)𝑚𝑠 respectively, integration by parts, (3.11), and known
inequalities yield

1
2
∥𝑟 (·, 𝑡)∥2

𝑚−1 +
1
2
∥𝑠(·, 𝑡)∥2

𝑚 + 𝜈
∫ 𝑡

0
∥𝑟 (·, 𝜎)∥2

𝑚 d𝜎 + 𝜏
∫ 𝑡

0
∥𝑠(·, 𝜎)∥2

𝑚+1 d𝜎

≤
∫ 𝑡

0
(∥Ξ𝛿 (·, 𝜎)∥𝑚−2∥𝑟 (·, 𝜎)∥𝑚 d𝜎 + ∥Λ𝛿 (·, 𝜎)∥𝑚−1∥𝑠(·, 𝜎)∥𝑚+1) d𝜎

+
∫ 𝑡

0
∥𝑹(·, 𝜎)∥𝑚 (∥𝑧𝛿 (·, 𝜎)∥𝑚∥𝑟 (·, 𝜎)∥𝑚−1 + ∥𝑟 (·, 𝜎)∥𝑚−1∥𝑟 (·, 𝜎)∥𝑚) d𝜎

+
∫ 𝑡

0
∥𝑹(·, 𝜎)∥𝑚 (∥𝜃 𝛿 (·, 𝜎)∥𝑚+1∥𝑠(·, 𝜎)∥𝑚 + ∥𝑠(·, 𝜎)∥𝑚∥𝑠(·, 𝜎)∥𝑚+1) d𝜎

+
∫ 𝑡

0

(
∥𝒚 𝛿 (𝜎) + 𝒁𝛿 (·, 𝜎)∥𝑚+1∥𝑟 (·, 𝜎)∥2

𝑚−1 + ∥𝑠(·, 𝜎)∥𝑚∥𝑟 (·, 𝜎)∥𝑚−1

)
d𝜎

+
∫ 𝑡

0
∥𝒚 𝛿 (𝜎) + 𝒁𝛿 (·, 𝜎)∥𝑚+1∥𝑠(·, 𝜎)∥2

𝑚 d𝜎.
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In order to further estimate the right-hand side of the previous inequality, we again
use (3.11), while also accounting for the 𝛿-scaling by substituting 𝜎 ↔ 𝛿𝜎 under
several of the integral signs. E.g., for 𝑡 ∈ (0, 𝛿), it follows that∫ 𝑡

0
∥ 𝑓 (·, 𝜎)∥𝑙 d𝜎 ≤ min

{
𝛿

∫ 1

0
∥ 𝑓 (·, 𝛿𝜎)∥𝑙 d𝜎,

∫ 𝛿

0
∥ 𝑓 (·, 𝜎)∥𝑙 d𝜎

}
(3.12)

for all 𝑓 ∈ L1((0, 𝛿); H𝑙 (T2;R)) with 𝑙 ≥ 0. The relations in (3.12), combined with the
respective boundedness of Ξ𝛿 in L1((0, 𝛿); H𝑚−2(T2;R)) and of 𝒚 in C0( [0, 1];R2),
yield lim

𝛿→0
∫ 𝛿0 ∥Ξ𝛿 (·, 𝜎)∥𝑚−2 d𝜎 = 0 and

lim
𝛿→0

∫ 𝛿

0
∥𝒚 𝛿 (𝜎) + 𝒁𝛿 (·, 𝜎)∥𝑚+1 d𝜎 ≤ sup

𝑠∈[0,1]
|𝒚(𝑠) |.

In particular, thanks to the assumptions in (3.7), one can infer∫ 𝛿

0
∥𝜃 𝛿 (·, 𝜎)∥2

𝑚+1 d𝜎 ≤ 𝛿−1 sup
𝑠∈[0,1]

∥𝜗𝛿 (·, 𝑠)∥2
𝑚+1 = 𝒪(𝛿) as 𝛿 −→ 0,

lim
𝛿→0

∫ 𝛿

0
∥Λ𝛿 (·, 𝜎)∥𝑚−1 d𝜎 = 0.

Therefore, in view of Grönwall’s lemma, and by essentially copying the analysis
from [20, Proof of Lemma 5.5], it follows that there is a constant 𝐶 > 0, which
is independent of 𝛿 ∈ (0, 1), 𝑡 ∈ [0, 𝛿], and (𝑤0, 𝜃0) varying in a bounded subset
of H𝑚 × H𝑚+1, such that

∥𝑟 (·, 𝑡)∥2
𝑚−1 + ∥𝑠(·, 𝑡)∥2

𝑚 ≤ 𝐶𝛿 + 𝐶
∫ 𝑡

0

(
∥𝑟 (·, 𝜎)∥4

𝑚−1 + ∥𝑠(·, 𝜎)∥4
𝑚

)
d𝜎,

where the family of constants (𝐶𝛿)𝛿∈ (0,1) satisfies lim𝛿→0𝐶𝛿 = 0. Finally, after
denoting

Ψ(𝑡) ≔ 𝐶𝛿 + 𝐶
∫ 𝑡

0

(
∥𝑟 (·, 𝜎)∥4

𝑚−1 + ∥𝑠(·, 𝜎)∥4
𝑚

)
d𝜎,

the convergence asserted in (3.9) follows by utilizing that Ψ obeys the differential
inequality d

d𝑡Ψ ≤ 𝐶Ψ2; for situations of similar nature, see, e.g., [19, Proposition 2.2]
and [20, Proof of Lemma 5.5]. □

3.2 Controllability of the vorticity-temperature formulation

Let 𝜁1, . . . , 𝜁6 ∈ L2((0, 1); C∞(T2;R)) be the profiles introduced in Section 1.2 and
fixed via (2.20). Moreover, we recall that 𝒚 is obtained via Theorem 2.1 and continue
using the notation 𝒚 𝛿 (𝑡) = 𝛿−1𝒚(𝛿−1𝑡) for 𝛿 ∈ (0, 1) and 𝑡 ∈ [0, 𝛿].

The following result, which is a consequence of Theorems 2.7 and 3.2, allows to
steer the temperature towards any state in a small time, while keeping the vorticity
close to the initial one. The control is hereby finitely-decomposable and physically
localized.
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Theorem 3.3. For any given 𝑇 > 0, 𝑚 ≥ 2, (𝑤0, 𝜃0, 𝜃1) ∈ H𝑚 × H𝑚+1 × H𝑚+1,
and (𝜑ext, 𝜓ext) ∈ L2((0, 𝑇); H𝑚−2 × H𝑚−1), there exist parameters

(𝛼𝛿,1, . . . , 𝛼𝛿,6)𝛿∈ (0,1) ⊂ L2((0, 1);R),
6∑︁
𝑙=1

∫
T2
𝛼𝛿,𝑙𝜁𝑙 (𝒙, ·) d𝒙 = 0 a.e. (3.13)

such that, when 𝛿 −→ 0, one has in H𝑚−1 × H𝑚 the convergence

𝑆𝛿

(
𝑤0, 𝜃0, 𝜑ext, 𝜓ext + 𝛿−2

6∑︁
𝑙=1

𝛼𝛿,𝑙 (𝛿−1·)𝜁𝑙 (·, 𝛿−1·), 𝒚 𝛿

)
|𝑡=𝛿 −→ (𝑤0, 𝜃1),

uniformly for (𝜑ext, 𝜓ext) from bounded subsets of L2((0, 𝑇); H𝑚−2 × H𝑚−1).

Proof. Let 𝜌 ∈ (0, 1) and take (̃𝑣𝜌, 𝜗𝜌) as the unique solution to the homogeneous
linear problem

𝜕𝑡 𝑣̃𝜌 + (𝒚 ·∇)̃𝑣𝜌 = 𝜕1𝜗𝜌, 𝜕𝑡𝜗𝜌 + (𝒚 ·∇)𝜗𝜌 = 0, (̃𝑣𝜌, 𝜗𝜌) (·, 0) = (𝑤0, 𝜌𝜃0). (3.14)

By the properties of Y from Theorem 2.1, it follows that

𝜗𝜌 (·, 1) = 𝜌𝜃0, 𝑣̃𝜌 (·, 1) = 𝑤0 + 𝑣̃𝜌,1, 𝑣̃𝜌,1 ≔

∫ 1

0
𝜕1𝜗𝜌 (Y (·, 1, 𝑠), 𝑠) d𝑠.

In addition, basic estimates yield

sup
𝑡∈[0,1]

∥𝜗𝜌 (·, 𝑡)∥𝑚+1 + ∥̃𝑣𝜌,1∥𝑚 = 𝒪(𝜌) as 𝜌 −→ 0. (3.15)

Now, let any 𝜀 > 0 be fixed. Then, for each 𝜌 ∈ (0, 1), an application of Theorem 2.7
with the target Θ1 ≔ 𝜌(𝜃1 − 𝜃0) provides (𝛼𝜌,1, . . . , 𝛼𝜌,6)𝜌∈ (0,1) ⊂ L2((0, 1);R) such
that the respective solution

(𝑉𝜌,Θ𝜌) ∈ C0( [0, 1]; H𝑚 × H𝑚+1) ∩ W1,2((0, 1); H𝑚−1 × H𝑚)

to

𝜕𝑡𝑉𝜌 + (𝒚 · ∇)𝑉𝜌 = 𝜕1Θ𝜌, 𝜕𝑡Θ𝜌 + (𝒚 · ∇)Θ𝜌 =
6∑︁
𝑙=1

𝛼𝜌,𝑙𝜁𝑙, 𝑉𝜌 (·, 0) = Θ𝜌 (·, 0) = 0,

(3.16)
obeys

∥Θ𝜌 (·, 1) − Θ1∥𝑚 < 𝜀.

Moreover, the control parameters are chosen such that

∥
6∑︁
𝑙=1

𝛼𝜌,𝑙𝜁𝑙 ∥L2 ( (0,1);H𝑚+1 ) ≤ 𝜌𝑐𝜀

( 6∑︁
𝑙=1

∥𝜁𝑙 ∥L2 ( (0,1);H𝑚+1 )

)
∥𝜃1 − 𝜃0∥𝑚+1,

6∑︁
𝑙=1

∫
T2
𝛼𝜌,𝑙𝜁𝑙 (𝒙, ·) d𝒙 = 0 a.e.,

(3.17)
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where 𝑐𝜀 is the operator norm of the bounded linear operator C𝜀 from Theorem 2.7.
Further, by estimating 𝑉𝜌 and Θ𝜌 in (3.16) using (3.17), one finds

sup
𝑡∈[0,1]

∥Θ𝜌 (·, 𝑡)∥𝑚+1 + ∥𝑤0 − 𝑣̃𝜌 (·, 1)∥𝑚 + ∥𝑉𝜌 (·, 1)∥𝑚 = 𝒪(𝜌) as 𝜌 −→ 0. (3.18)

Now, the pair (𝑣𝜌, 𝜗𝜌) ≔ (̃𝑣𝜌 +𝑉𝜌, 𝜗𝜌 + Θ𝜌) solves the linear reference system (3.6)
in Theorem 3.2 with force 𝜂𝜌 =

∑6
𝑙=1 𝛼𝜌,𝑙𝜁𝑙, and it holds

∥𝜗𝜌 (·, 1) − 𝜌𝜃1∥𝑚 < 𝜀.

Moreover, from (3.15) and (3.18) it follows that

sup
𝑡∈[0,1]

∥𝜗𝜌 (·, 𝑡)∥𝑚+1 + ∥𝑣𝜌 (·, 1) − 𝑤0∥𝑚−1 = 𝒪(𝜌) as 𝜌 −→ 0.

Hence, by Theorem 3.2, there exists 𝛿∗ > 0 such that

∥𝑆𝛿
(
𝑤0, 𝜃0, 𝜑ext, 𝜓ext + 𝛿−2𝜂𝛿 (·, 𝛿−1·), 𝒚 𝛿

)
|𝑡=𝛿 − (𝑤0, 𝜃1)∥H𝑚−1×H𝑚 < 𝜀

for all 𝛿 ∈ (0, 𝛿∗). □

The following result specifies types of target states that are approximately reached
naturally (without using an additive control) when starting from appropriate initial
data. To this end, let Π1 : A𝑚

𝑇
× A𝑚+1

𝑇
−→ A𝑚

𝑇
denote the projection to the first

component.

Theorem 3.4. Let 𝑚 ≥ 2,𝑇 > 0, average-free 𝜉, 𝜉 ∈ C∞(T2;R), (𝑤0, 𝜃0) ∈ H𝑚×H𝑚+1,
and (𝜑ext, 𝜓ext) ∈ L2((0, 𝑇); H𝑚−2 × H𝑚−1). As 𝛿 −→ 0, one has

Π1𝑆𝛿 (𝑤0, 𝜃0 − 𝛿−1𝜉, 𝜑ext, 𝜓ext, 0) |𝑡=𝛿 −→ 𝑤0 − 𝜕1𝜉, (3.19)

𝑆𝛿 (𝑤0+𝛿−1/2𝜉, 𝜃0, 𝜑ext, 𝜓ext, 0)|𝑡=𝛿−(0, 𝛿−1/2𝜉) −→(𝑤0−(𝚼(𝜉, 0) · ∇)𝜉, 𝜃0), (3.20)

in the norms of H𝑚−1 respectively H𝑚−1 ×H𝑚. Both convergences in (3.19) and (3.20)
are uniform with respect to (𝜑ext, 𝜓ext) from bounded subsets of L2((0, 𝑇); H𝑚−2 ×
H𝑚−1).

Proof. We develop a simplified version of the arguments given in [4, Proof of
Proposition 1.2] for the 3D primitive equations. First, we observe that

(𝑊𝛿 ,Θ𝛿) = 𝑆𝛿 (𝑤0, 𝜃0 − 𝛿−1𝜉, 𝜑ext, 𝜓ext, 0) + (0, 𝛿−1𝜉)

solves
𝜕𝑡𝑊𝛿 − 𝜈Δ𝑊𝛿 + (𝑼𝛿 · ∇)𝑊𝛿 = 𝜕1(Θ𝛿 − 𝛿−1𝜉) + 𝜑ext,

𝜕𝑡Θ𝛿 − 𝜏Δ(Θ𝛿 − 𝛿−1𝜉) + (𝑼𝛿 · ∇) (Θ𝛿 − 𝛿−1𝜉) = 𝜓ext,

∇ ∧𝑼𝛿 = 𝑊𝛿 , ∇ ·𝑼𝛿 = 0,
∫
T2
𝑼𝛿 (𝒙, 𝑡) d𝒙 = 0,

𝑊𝛿 (·, 0) = 𝑊0 ≔ 𝑤0, Θ𝛿 (·, 0) = Θ0 ≔ 𝜃0.

(3.21)
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Showing (3.19). It remains to verify for the solutions (𝑊𝛿 ,𝑼𝛿 ,Θ𝛿)𝛿∈ (0,1) to (3.21)
the convergence

lim
𝛿→0

∥𝑊𝛿 (·, 𝛿) − (𝑊0 − 𝜕1𝜉)∥𝑚−1 = 0. (3.22)

Establishing (3.22) means showing ∥𝑄 𝛿 (·, 𝛿)∥𝑚−1 −→ 0 as 𝛿 −→ 0 for the functions

𝑄 𝛿 (𝒙, 𝑡) ≔ 𝑊𝛿 (𝒙, 𝑡) −𝑊0(𝒙) + 𝛿−1𝑡𝜕1𝜉 (𝒙), 𝛿 ∈ (0, 1).

In fact, each 𝑄 𝛿 obeys the initial condition 𝑄 𝛿 (·, 0) = 0 and solves

𝜕𝑡𝑄 𝛿 − 𝜈Δ𝑄 𝛿 + (𝑽𝛿 · ∇)𝑄 𝛿 = 𝜑ext + 𝜕1(Θ𝛿 − 𝑅𝛿) + 𝜕1𝑅𝛿 − 𝜈Δ(𝑄 𝛿 −𝑊𝛿)
+((𝑼𝛿 − 𝑽𝛿) · ∇) (𝑄 𝛿 −𝑊𝛿) + (𝑽𝛿 · ∇) (𝑄 𝛿 −𝑊𝛿) + ((𝑽𝛿 −𝑼𝛿) · ∇)𝑄 𝛿 ,

(3.23)

where 𝑽𝛿 = 𝚼 (𝑄 𝛿 , 0) and

𝑅𝛿 (·, 𝑡) ≔ Θ𝛿 (·, 𝑡) − Θ0 + 𝛿−1𝑡𝜏Δ𝜉 − 𝛿−1𝑡

(
𝚼

(
𝑊0 −

𝛿−1𝑡𝜕1𝜉

2
, 0

)
· ∇

)
𝜉 (3.24)

for 𝛿 ∈ (0, 1) and 𝑡 ∈ [0, 𝛿]. In particular, one has 𝑅𝛿 (·, 0) = 0, and 𝑅𝛿 satisfies

𝜕𝑡𝑅𝛿 − 𝜏Δ𝑅𝛿 + (𝑽𝛿 · ∇)𝑅𝛿 = 𝜓ext − 𝜏Δ(𝑅𝛿 − Θ𝛿) + (𝑽𝛿 · ∇) (𝑅𝛿 − Θ𝛿)
+((𝑽𝛿 −𝑼𝛿) · ∇)𝑅𝛿 + ((𝑽𝛿 −𝑼𝛿) · ∇) (Θ𝛿 − 𝑅𝛿) + 𝛿−1(𝑽𝛿 · ∇)𝜉.

(3.25)

Now, given any 𝑎 ≥ 1, it follows that

∥(𝑄 𝛿 −𝑊𝛿)∥𝑎L𝑎 ( (0, 𝛿 );H𝑚 ) + ∥(𝑅𝛿 − Θ𝛿)∥𝑎L𝑎 ( (0, 𝛿 );H𝑚+1 ) = 𝒪(𝛿) (3.26)

as 𝛿 −→ 0; e.g., for the second term this can be seen via

∥(𝑅𝛿 − Θ𝛿)∥𝑎L𝑎 ( (0, 𝛿 );H𝑚+1 )

=

∫ 𝛿

0
∥Θ0 − 𝛿−1𝑠Δ𝜉 + 𝛿−1𝑠

(
𝚼

(
𝑊0 −

𝛿−1𝑠𝜕1𝜉

2
, 0

)
· ∇

)
𝜉∥𝑎𝑚+1 d𝑠

≤ 𝛿𝐶
(
1 + ∥𝑊0∥2𝑎

𝑚 + ∥Θ0∥𝑎𝑚+1 + ∥𝜉∥2𝑎
𝑚+4

)
.

The argument is then completed by utilizing (3.23), (3.25), and (3.26) to derive energy
estimates for 𝑅𝛿 and 𝑄 𝛿 . Indeed, one can begin with formally multiplying (3.23)
and (3.25) by (−Δ)𝑚−1𝑄 𝛿 and (−Δ)𝑚𝑅𝛿 respectively; integration by parts, Sobolev
embeddings, and Grönwall’s inequality subsequently imply, together with (3.26),
that ∥𝑄 𝛿 (·, 𝛿)∥𝑚−1 −→ 0 as 𝛿 −→ 0. From the viewpoint of estimates, the procedure
is similar to that presented in “Step 2” of the proof for Theorem 3.2.

Showing (3.20). Instead of (3.21) we consider the time evolution of the modified
trajectory

(𝑊𝛿 ,Θ𝛿) ≔ 𝑆𝛿 (𝑤0 + 𝛿−1/2𝜉, 𝜃0, 𝜑ext, 𝜓ext, 0) − (𝛿−1/2𝜉, 0),
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which solves the problem

𝜕𝑡𝑊𝛿 − 𝜈Δ𝑊𝛿 + (𝑼𝛿 · ∇)𝑊𝛿 = 𝜑ext + 𝜕1Θ𝛿 + 𝜈𝛿−1/2Δ𝜉

−𝛿−1/2 (𝑼𝛿 · ∇) 𝜉 − 𝛿−1/2
(
𝚼(𝜉, 0) · ∇

)
𝑊𝛿 − 𝛿−1

(
𝚼(𝜉, 0) · ∇

)
𝜉,

∇ ∧𝑼𝛿 = 𝑊𝛿 , ∇ ·𝑼𝛿 = 0,
∫
T2
𝑼𝛿 (𝒙, 𝑡) d𝒙 = 0,

𝜕𝑡Θ𝛿 − 𝜏ΔΘ𝛿 + (𝑼𝛿 · ∇)Θ𝛿 = 𝜓ext − 𝛿−1/2
(
𝚼(𝜉, 0) · ∇

)
Θ𝛿 ,

𝑊𝛿 (·, 0) = 𝑤0, Θ𝛿 (·, 0) = 𝜃0.

Then, the convergence in (3.20) follows after showing that the remainder terms

𝑄 𝛿 (·, 𝑡) ≔ 𝑊𝛿 (·, 𝑡) −𝑊0 + 𝛿−1𝑡
(
𝚼(𝜉, 0) · ∇

)
𝜉 − 𝛿−1/2𝑡𝜈Δ𝜉,

𝑅𝛿 (·, 𝑡) ≔ Θ𝛿 (·, 𝑡) − Θ0

satisfy (𝑄 𝛿 , 𝑅𝛿) (·, 𝛿) −→ (0, 0) in H𝑚−1 × H𝑚 as 𝛿 −→ 0. Indeed, instead of (3.26),
one now has

∥(𝑄 𝛿 −𝑊𝛿)∥𝑎L𝑎 ( (0, 𝛿 );H𝑚 ) + ∥(𝑅𝛿 − Θ𝛿)∥𝑎L𝑎 ( (0, 𝛿 );H𝑚+1 ) = 𝒪(𝛿1/2),

which suffices in order to derive standard energy estimates for 𝑄 𝛿 and 𝑅𝛿 as explained
in the proof of Theorem 3.2. □

We also need the below auxiliary result which can be proved by elementary
trigonometric calculations.

Lemma 3.5. Let E be the collection of sin(𝒙 ·𝒏) and cos(𝒙 ·𝒏) with 𝒏 ∈ N×(N∪{0}).
Then, the set

H ≔
{
𝜉0 + (𝚼(𝜉1, 0) · ∇) 𝜉1 + (𝚼(𝜉2, 0) · ∇) 𝜉2 | 𝜉0, 𝜉1, 𝜉2 ∈ spanR E

}
contains ± sin(𝒙 · 𝒏) and ± cos(𝒙 · 𝒏) for all nonzero 𝒏 ∈ Z2.

Proof. The idea is to utilize the representations 𝚼(sin(𝒏 · 𝒙), 0) = 𝒏⊥ |𝒏|−2 cos(𝒏 · 𝒙)
and 𝚼(cos(𝒏 ·𝒙), 0) = −𝒏⊥ |𝒏|−2 sin(𝒏 ·𝒙), and then to express sin(𝒙 ·𝒏) and cos(𝒙 ·𝒏)
via trigonometric angle identities as elements of H . Such arguments are described,
e.g., in [3]. □

As a direct consequence of Theorem 3.3 and Theorem 3.4, the following corollary
allows to approximately reach all target states that are of the form “initial state +
bilinear term + large residual with vanishing 𝑥1-average”.

Corollary 3.6. Given 𝑚 ≥ 2, 𝑇 > 0, 𝜉 = 𝜕1𝜅 for some 𝜅 ∈ C∞(T2;R), initial
states (𝑤0, 𝜃0) ∈ H𝑚 ×H𝑚+1, and (𝜑ext, 𝜓ext) ∈ L2((0, 𝑇); H𝑚−2 ×H𝑚−1). There exist
control parameters (𝛾̃𝛿 , 𝛾̃𝛿,1, . . . , 𝛾̃𝛿,6)𝛿>0 ⊂ L2((0, 𝑇);R) and ℵ̃𝛿 ∈ C∞

0 ((0, 𝑇);R)
such that

Π1𝑆𝛿

(
𝑤0, 𝜃0, 𝜑ext, 𝜓ext + 𝜂𝛿 , ℵ̃𝛿

)
|𝑡=𝛿 − 𝛿−1/2𝜉 −→ 𝑤0 − (𝚼(𝜉, 0) · ∇)𝜉 as 𝛿 −→ 0,

(3.27)
where 𝜂𝛿 (𝒙, 𝑡) ≔

∑6
𝑙=1 𝛾̃𝛿,𝑙 (𝑡)𝜁𝑙 (𝒙, 𝛾̃𝛿 (𝑡)).
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Proof. The argument consists of three steps. 1) For any 𝛿2 > 0 and 𝛿3 > 0, one
can determine 𝛿1 > 0 via Theorem 3.3 such that the corresponding trajectory in
Theorem 3.3 comes at 𝑡 = 𝛿1 as close to 𝜃0 − 𝛿−1

2 𝛿
−1/2
3 𝜅 as desired. 2) depending

on 𝛿3, Theorem 3.4 allows taking 𝛿2 so small that the left-hand side in (3.19) with
𝛿 = 𝛿2 and 𝜉 = 𝛿

−1/2
3 𝜅 is at 𝑡 = 𝛿2 as close to 𝑤0 − 𝛿−1/2

3 𝜉 as needed. 3) A good
value of 𝛿3 is then taken so that the left-hand side in (3.20) with 𝛿 = 𝛿3 and 𝜉 = 𝜉 is
desirably near to 𝑤0 − (𝚼(𝜉, 0) ·∇)𝜉 at time 𝑡 = 𝛿3. Using the continuous dependence
of solutions to (3.2) on the data, one can glue the respective trajectories from these
steps by first fixing 𝛿3, then 𝛿2, and finally 𝛿1.

Summarized, via Theorem 3.3 and Theorem 3.4, we choose for any given 𝛿 > 0
the numbers 0 < 𝛿1, 𝛿2, 𝛿3 < 𝛿/3, the parameters (𝛼𝛿1,𝑙)𝑙∈{1,...,6} ⊂ L2((0, 1);R),
and

𝛾̃𝛿 (𝑡) ≔ I(0, 𝛿1 )𝛿
−1
1 𝑡, 𝛾̃𝛿,𝑙 (𝑡) ≔ 𝛿−2

1 𝛼𝛿1,𝑙 (𝛿−1
1 𝑡), ℵ̃𝛿 (𝑡) ≔ I(0, 𝛿1 ) 𝒚 𝛿1 (𝑡)

such that (3.27) holds. □

The next theorem provides the combined global approximate controllability of the
vorticity and the temperature in any given time.

Theorem 3.7. Assume that 𝑚 ≥ 2, 𝑇 > 0, 𝜀 > 0, (𝑤0, 𝜃0), (𝑤𝑇 , 𝜃𝑇 ) ∈ H𝑚−1 × H𝑚,
and (𝜑ext, 𝜓ext) ∈ L2((0, 𝑇); H𝑚−1 × H𝑚). There exist 𝛾, 𝛾1, . . . , 𝛾6 ∈ L2((0, 𝑇);R)
such that the corresponding solution (𝑤, 𝒖, 𝜃) to (3.2), with control 𝜂 as in (1.5), has
the regularity (𝑤, 𝜃) ∈ X𝑚

𝑇
with ∫T2 𝒖(𝒙, ·) d𝒙 ∈ C∞

0 ((0, 𝑇);R2) and obeys

∥𝑤(·, 𝑇) − 𝑤𝑇 ∥𝑚−1 + ∥𝜃 (·, 𝑇) − 𝜃𝑇 ∥𝑚 <
𝜀

𝐶0
(3.28)

for the constant 𝐶0 > 0 from (3.4).

Proof. By standard energy estimates for the vorticity-temperature system (3.2), there
exists a small time 𝛿̃0 > 0 such that the implication

∥𝑎 − 𝑤𝑇 ∥𝑚−1 + ∥𝑏 − 𝜃𝑇 ∥𝑚 <
2𝜀

3𝐶0
=⇒ ∥𝑤𝛿 − 𝑤𝑇 ∥𝑚−1 + ∥𝜃 𝛿 − 𝜃𝑇 ∥𝑚 <

𝜀

𝐶0

is true for all pairs

(𝑤𝛿 , 𝜃 𝛿) ≔ 𝑆𝛿 (𝑎, 𝑏, 𝜑ext(𝑇 − 𝛿 + ·), 𝜓ext(𝑇 − 𝛿 + ·), 0) |𝑡=𝛿 , 0 < 𝛿 ≤ 𝛿̃0,

and where 𝛿̃0 depends on 𝜀, 𝐶0, 𝑤𝑇 , 𝜃𝑇 , and (𝜑ext, 𝜓ext). Now, the desired parameters
𝛾, 𝛾, 𝛾1, . . . , 𝛾6 ∈ L2((0, 𝑇);R) are obtained as follows.

Step 1. Starting with controls switched off. During the time interval [0, 𝑇 − 𝛿̃0],
no controls shall be applied. Let us denote the state of the uncontrolled trajectory at
the time 𝑡 = 𝑇 − 𝛿0 by

(𝑤0, 𝜃̃0) ≔ 𝑆𝑇−𝛿0 (𝑤0, 𝜃0, 𝜑ext, 𝜓ext, 0) |𝑡=𝑇−𝛿0 ∈ H𝑚+1 × H𝑚+2,
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where 0 < 𝛿0 ≤ 𝛿̃0 is arbitrarily selected outside a temporal set of zero measure on
which the desired regularity (𝑤0, 𝜃̃0) ∈ H𝑚+1 × H𝑚+2 is unknown. This is possible
due to the assumption (𝜑ext, 𝜓ext) ∈ L2((0, 𝑇); H𝑚−1 × H𝑚), as it follows then from
the parabolic smoothing effects of (3.2) (cf. [22]) that

𝑆𝑇 (𝑤0, 𝜃0, 𝜑ext, 𝜓ext, 0) | (𝑎,𝑇 ) ∈ L2((𝑎, 𝑇); H𝑚+1 × H𝑚+2)

for arbitrarily fixed 0 < 𝑎 < 𝑇 .

Step 2. Energizing special intermediate profiles. Owing to Lemma 3.5, we choose
an integer 𝐿 ≥ 0 and average-free 𝜉0, 𝜉1, . . . , 𝜉2𝐿 ∈ C∞(T2;R), where 𝜉𝑖 = 𝜕1𝜅𝑖 for
some 𝜅𝑖 ∈ C∞(T2;R) and 𝑖 ∈ {1, . . . , 2𝐿}, so that

∥𝑉 − 𝑤𝑇 ∥𝑚−1 <
𝜀

6𝐶0
, 𝑉 ≔ 𝑤0 − 𝜕1𝜉0 −

2𝐿∑︁
𝑖=1

(𝚼(𝜉𝑖 , 0) · ∇)𝜉𝑖 . (3.29)

Now, by 2𝐿 applications of Corollary 3.6, starting from (𝑤0, 𝜃̃0) one can approximately
reach the state comprised of

∑2𝐿
𝑖=1(𝚼(𝜉𝑖 , 0) · ∇)𝜉𝑖 plus 2𝐿 large residuals which

arise from the “𝛿−1/2𝜉 = 𝛿−1/2𝜕1𝜅” term in (3.27). Then, resorting once more to
Theorem 3.3 and the statement (3.19) of Theorem 3.4, the −𝜕1𝜉0 term in (3.29)
can be generated while eliminating the aforementioned residuals. Thus, one obtains
𝛿1 < 𝛿0/2 and parameters (𝛾̃, 𝛾̃1, . . . , 𝛾̃6)𝛿>0 ∈ L2((0, 𝑇);R) and ℵ̃ ∈ C∞

0 ((0, 𝑇);R)
such that

(𝑤, 𝜃̃) ≔ 𝑆

(
𝑤0, 𝜃̃0, 𝜑ext, 𝜓ext + 𝜂, ℵ̃𝛿

)
|𝑡=𝛿1 ,

where

𝜂(𝒙, 𝑡) ≔
6∑︁
𝑙=1

𝛾̃𝑙 (𝑡)𝜁𝑙 (𝒙, 𝛾̃(𝑡)),

obeys

(𝑤0, 𝜃̂0) ≔ (𝑤, 𝜃̃) (·, 𝛿1) ∈ H𝑚 × H𝑚+1, ∥𝑤(·, 𝛿1) −𝑉 ∥𝑚−1 <
𝜀

6𝐶0
. (3.30)

The regularity condition in (3.30) holds due to (𝜑ext, 𝜓ext) ∈ L2((0, 𝑇); H𝑚−1 × H𝑚)
and parabolic smoothing effects.

Step 3. Reaching the target state. Another application of Theorem 3.3, with any
target temperature 𝜃̂𝑇 ∈ H𝑚+1 satisfying ∥𝜃̂𝑇−𝜃𝑇 ∥𝑚 < 𝜀/6𝐶0, provides 0 < 𝛿2 < 𝛿0/2
and control parameters

(𝛽1, . . . , 𝛽6) ⊂ L2((0, 1);R)

for which the trajectory

(𝑤, 𝜃̂)≔𝑆𝛿2 (𝑤0, 𝜃̂0, 𝜑ext(𝑇 − 𝛿0 + 𝛿1 + ·), 𝜓ext(𝑇 − 𝛿0 + 𝛿1 + ·) + 𝜂, 𝒚 𝛿2)
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driven by 𝜂(·, 𝑡) ≔ 𝛿−1
2

∑6
𝑙=1 𝛽𝑙 (𝛿−1

2 𝑡)𝜁𝑙 (·, 𝛿−1
2 𝑡) for 0 ≤ 𝑡 ≤ 𝛿2 satisfies

∥𝑤(·, 𝛿2) − 𝑤0∥𝑚−1 + ∥𝜃̂ (·, 𝛿2) − 𝜃̂𝑇 ∥𝑚 <
𝜀

3𝐶0
.

In view of (3.29) and (3.30), it follows that

∥𝑤(·, 𝛿2) − 𝑤𝑇 ∥𝑚−1 + ∥𝜃̂ (·, 𝛿2) − 𝜃𝑇 ∥𝑚 <
2𝜀

3𝐶0
.

Summary. By gluing together the above-obtained trajectories and controls, the
previous constructions yield the control parameters 𝛾, 𝛾1, . . . , 𝛾6 ∈ L2((0, 𝑇);R)
and a respectively controlled trajectory (𝑤, 𝒖, 𝜃) having the desired properties. In
particular, since 𝒚 obtained via Theorem 2.1 is compactly supported in (0, 1), it
follows that ∫T2 𝒖(𝒙, ·) d𝒙 ∈ C∞

0 ((0, 𝑇);R2); and in fact, the first component of the
velocity average vanishes: ∫T2 𝑢1(𝒙, ·) d𝒙 = 0. □

3.3 Conclusion of Theorems 1.2 and 1.3

Let 𝑟 ≥ 2, 𝑇 > 0, and 𝜀 > 0 be as in Theorems 1.2 and 1.3. An application of
Theorem 3.7 with 𝑚 = 𝑟 and (𝑤0, 𝑤𝑇 ) ≔ (∇ ∧ 𝒖0,∇ ∧ 𝒖𝑇 ) provides a solution
(𝒖, 𝑤, 𝜃) to (3.2) that satisfies (3.28), and which is driven by a control 𝜂 of the form

𝜂(𝒙, 𝑡) =
6∑︁
𝑙=1

𝛾𝑙 (𝑡)𝜁𝑙 (𝒙, 𝛾(𝑡)).

An issue is now that, by the proof of Theorem 3.7, 𝒖(·, 𝑡) should have nonzero (large)
average for some 𝑡 ∈ (0, 𝑇), but 𝜃 obtained in Theorem 3.7 as a combination of
Theorem 3.3 and Theorem 3.4 is average-free (see (3.13)). Thus, in order to pass
to the velocity-temperature formulation, we shall now either add a velocity control,
or modify 𝜃 appropriately. Hereto, let us denote by ℵ ∈ C∞

0 ((0, 𝑇);R) the function
determined by ℵ𝒆grav = ∫T2 𝒖(𝒙, ·) d𝒙 ∈ C∞

0 ((0, 𝑇);R2).

Option 1. Using only a localized temperature control. Let 𝜒 be the cutoff from
(2.1) with supp(𝒙 ↦→ 𝜒(𝑥2)) ⊂ ω. Then, we replace 𝜃 by 𝜃̃ (𝒙, 𝑡) ≔ 𝜃 (𝒙, 𝑡)+𝜒(𝑥2)ℵ′(𝑡),
which satisfies (cf. Theorem 3.7)

𝜃̃ (·, 0) = 𝜃 (·, 0), 𝜃̃ (·, 𝑇) = 𝜃 (·, 𝑇),

followed by renaming 𝜃̃ again as 𝜃. Then, the triple (𝒖 = [𝑢1, 𝑢2]⊤, 𝑤, 𝜃) obeys (3.28)
and solves (1.1) with a control 𝜂 of the form

𝜂(𝒙) = 𝜒(𝑥2)ℵ′′(𝑡) − 𝜏𝜒′′(𝑥2)ℵ′(𝑡) + 𝑢2(𝒙, 𝑡)𝜒′(𝑥2)ℵ′(𝑡) +
6∑︁
𝑙=1

𝛾𝑙 (𝑡)𝜁𝑙 (𝒙, 𝛾(𝑡)),

which satisfies supp(𝜂) ⊂ ω. As seen in the proof of Theorem 2.7, we can take 𝜁1 = 𝜒

and 𝜁2 = 𝜒′. This leads to the resolution of Theorem 1.2.
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Remark 3.8. One could also correct the temperature average by adding ℵ′(𝑡) to 𝜃
obtained from Theorem 3.7. While this would allow to merely employ a finitely
decomposable temperature control, there appears one term that is not physically
localized in ω: Iω𝜂(𝒙, 𝑡) in (1.1) would be replaced by ℵ′′(𝑡) +Iω

∑6
𝑙=1 𝛾𝑙 (𝑡)𝜁𝑙 (𝒙, 𝛾(𝑡)).

Option 2. One-dimensional control in the second velocity component. The
triple (𝒖, 𝑤, 𝜃) obtained via Theorem 3.7 satisfies the controllability condition (3.28)
and solves

𝜕𝑡𝒖 − 𝜈Δ𝒖 + (𝒖 · ∇) 𝒖 + ∇𝑝 = (𝜃 + Iω𝜂)𝒆grav +𝚽ext, ∇ · 𝒖 = 0, 𝑤(·, 0) = 𝑤0,

𝜕𝑡𝜃 − 𝜏Δ𝜃 + (𝒖 · ∇)𝜃 = Iω

( 6∑︁
𝑙=1

𝛾𝑙 (𝑡)𝜁𝑙 (𝒙, 𝛾(𝑡))
)
+ 𝜓ext, 𝜃 (·, 0) = 𝜃0,

where 𝜂(𝒙, 𝑡) ≔ ℵ′(𝑡)𝜒(𝑥2), and noting that 𝜒 is a universal profile which only depends
on ω. Because in (2.20) the there-appearing cutoff profile 𝜒 can be taken identically to
the one that is introduced here with the same name, we may write 𝜂(𝒙, 𝑡) = ℵ′(𝑡)𝜁1(𝑥2).
This completes the proof of Theorem 1.3.

Conclusion. Since 𝒙 ↦→ 𝜒(𝑥2)𝒆grav is curl-free, all above-listed options for the
controls ensure together with the relations in (3.4) and (3.28) the target condition

∥𝒖(·, 𝑇) − 𝒖𝑇 ∥𝑟 + ∥𝜃 (·, 𝑇) − 𝜃𝑇 ∥𝑟 ≤ 𝐶0∥𝑤(·, 𝑇) − 𝑤𝑇 ∥𝑟−1 + ∥𝜃 (·, 𝑇) − 𝜃𝑇 ∥𝑟 < 𝜀.
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