
Localized and degenerate controls for the
incompressible Navier–Stokes system

Vahagn Nersesyan ∗ Manuel Rissel †

Abstract

We consider the global approximate controllability of the two-dimensional
incompressible Navier–Stokes system driven by a physically localized and
degenerate force. In other words, the fluid is regulated via four scalar controls
that depend only on time and appear as coefficients in an effectively constructed
driving force supported in a given subdomain. Our idea consists of squeezing
low mode controls into a small region, essentially by tracking their actions
along the characteristic curves of a linearized vorticity equation. In this way,
through explicit constructions and by connecting Coron’s return method with
recent concepts from geometric control, the original problem for the nonlinear
Navier–Stokes system is reduced to one for a linear transport equation steered by
a global force. This article can be viewed as an attempt to tackle a well-known
open problem due to Agrachev.
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1 Introduction
The study of fluid mechanics has ever since been intertwined with aspirations to not
only observe, but also to manipulate or regulate flows of liquids. Modern control
theory, to this end, offers suitable notions that allow formalizing such endeavors.
The question of controllability, in particular, is to ask whether and in which sense
external influences (the controls) can cause a system to transition between designated
states. From a mathematical stance, and due to the nonlinear nature of the involved
constituents, several types of difficulties may arise. These are often related to the
size of the prescribed data, how the controls are allowed to enter the system, and
the overall degree of degeneracy in the formulated controllability problem. In this
sense, the present article sets out to accommodate three ambitious requirements.
First, the admissible states might be located far away from each other. Second, the
fluid should be acted upon merely in a subdomain of small area. Third, it is desired
that the driving force can be expressed through explicit formulas in terms of a fixed
number of unknown control parameters.

We establish the global approximate controllability for incompressible viscous
fluids on the torus T2 ≔ R2/2𝜋Z2 by means of a degenerate force which is physically
localized in a given subdomain Ω ⊂ T2. The keyword “global” refers to the
admissible distance between initial and target profiles being unlimited, the property
“degenerate” emphasizes that there are only few degrees of freedom, while “localized”
means here that Ω can be any subdomain containing two curves C1, C2 ⊂ Ω rendering
the cut torus T2 \ (C1∪C2) simply-connected (cf. Figure 1). More precisely, the force
employed as a control is supported in the control region Ω and explicitly depends,
through a formula, on four unknown control parameters. Aside from these four
parameters, which are functions only of time, and a scaling constant, the external
force shall be fixed independently of the prescribed data. Our efforts contrast the
common approach of searching localized interior controls in the form of purely
abstract elements of infinite-dimensional function spaces.

Figure 1: Two of the various possibilities for localizing the controls. In each picture, the (blue) filled
part illustrates a valid control region Ω ⊂ T2, which can be taken of arbitrary nonzero area.
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1.1 The controllability problem
Let a viscous Newtonian fluid of velocity 𝒖 : T2 × (0, 𝑇ctrl) −→ R2 and exerted
pressure 𝑝 : T2 × (0, 𝑇ctrl) −→ R be governed by the two-dimensional incompressible
Navier–Stokes system

𝜕𝑡𝒖 − 𝜈Δ𝒖 + (𝒖 · ∇) 𝒖 + ∇𝑝 = 𝒇 + IΩ𝝃, ∇ · 𝒖 = 0, 𝒖(·, 0) = 𝒖0, (1.1)

where 𝜈 > 0 quantifies the viscosity of the fluid at hand, 𝒖0 : T2 −→ R2 stands
for the initial velocity, 𝒇 : T2 × (0, 𝑇ctrl) −→ R2 is a known external force, IΩ denotes
the indicator function of the subset Ω, and 𝝃 : T2 × (0, 𝑇ctrl) −→ R2 represents a
control sought to approximately steer the fluid in any fixed time 𝑇ctrl > 0 towards
any prescribed admissible target state 𝒖1 : T2 −→ R2. The system (1.1) is said to be
globally approximately controllable if for any given states 𝒖0 and 𝒖1 belonging to a
certain space with norm ∥ · ∥ and arbitrarily chosen accuracy parameter 𝜀 > 0, there
exists a control 𝝃 such that the corresponding solution to (1.1) satisfies

∥𝒖(·, 𝑇ctrl) − 𝒖1∥ < 𝜀.

In view of applications where only a limited number of control actions can be
realized, and where explicit representations of the controls are required, it would
be desirable to achieve the global approximate controllability of (1.1) by means of
finite-dimensional controls

𝝃 (𝒙, 𝑡) = 𝛼1(𝑡)𝝍1(𝒙) + · · · + 𝛼𝑁 (𝑡)𝝍𝑁 (𝒙), (1.2)

where 𝝍1, . . . ,𝝍𝑁 : T2 −→ R2 are linearly independent vector fields unrelated to the
prescribed data and the viscosity. This task amounts to identifying a fixed number
of parameters 𝛼1(𝑡), . . . , 𝛼𝑁 (𝑡). When Ω = T2, the celebrated Agrachev–Sarychev
approach [2] and its various advancements allow solving problems of this type.
In reality, however, designing controls to act in the whole domain is difficult to
justify. Therefore, the spotlight is put on the challenging case Ω ≠ T2. In fact, the
construction of physically localized and finite-dimensional controls constitutes a
widely open problem described by Agrachev in [1, Section 7].

The approach proposed in the present article can be viewed as a step towards this
open problem in the following sense. We explicitly fix nine effectively constructed
functions

𝝑1, . . . , 𝝑4 : T2 × (0, 1) −→ R2, 𝝑5, . . . , 𝝑9 : T2 −→ R2,

9⋃
𝑙=1

supp(𝝑𝑙) ⊂ Ω

and subsequently seek the control 𝝃 : T2 × (0, 𝑇ctrl) −→ R2 of the specific form

𝝃 (𝒙, 𝑡) =
4∑︁
𝑙=1

𝛾𝑙 (𝑡)𝝑𝑙 (𝒙, 𝜎(𝑇ctrl − 𝑡)) +
9∑︁
𝑙=5

𝛾𝑙 (𝑡)𝝑𝑙 (𝒙). (1.3)
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In order to provide a more precise breakdown how the driving force 𝝃 will be localized,
we introduce any fixed nonempty subdomain ω ⊂ Ω and choose 𝝑1, . . . , 𝝑9 with

7⋃
𝑙=1

supp(𝝑𝑙) ⊂ ω, supp(𝝑8) ∪ supp(𝝑9) ⊂ Ω.

The known profiles 𝝑1, . . . , 𝝑9 only depend on the fixed control region Ω and the
chosen subdomain ω. In particular, they are independent of the prescribed initial
state, the target state, the viscosity, the force 𝒇 , and the control time 𝑇ctrl. In this
way, the global approximate controllability for the system (1.1) shall be established
by identifying the parameters 𝛾1(𝑡), . . . , 𝛾9(𝑡) and the scaling constant 𝜎 ≥ 𝑇−1

ctrl,
depending on the given data (cf. Figure 2). In fact, 𝜎 can be any sufficiently
large number and we are able to express 𝛾5, . . . , 𝛾9 by means of 𝛾1, . . . , 𝛾4 through
universal formulas (cf. (2.12)), which justifies the point of view that one merely has
to act on the system (1.1) with four controls:

𝛾1, . . . , 𝛾4 ∈ L2((0, 𝑇ctrl);R).

Fix the control
region Ω ⊂ T2

and ω ⊂ Ω

Effectively
construct
𝝑1, . . . , 𝝑9

Select 𝜈 > 0, 𝑇ctrl > 0,
𝜀 > 0, 𝒇 , and

states 𝒖0 and 𝒖1

Obtain controls 𝛾1, . . . , 𝛾4,
determine 𝛾5, . . . , 𝛾9, and fix
𝜎 ≥ 𝑇−1

ctrl sufficiently large

The external force 𝝃 defined
via (1.3) steers the fluid from
𝒖0 to a 𝜀-neighborhood of 𝒖1

Figure 2: An illustration of the dependencies in the proposed framework.

1.2 Notations
The basic L2-based spaces of average-free scalar fields and divergence-free vector
fields are specified by

Ha𝑣g ≔

{
𝑓 ∈ L2(T2;R) |

∫
T2
𝑓 (𝒙) d𝒙 = 0

}
, Hdi𝑣 ≔

{
𝒇 ∈ L2(T2;R2) | ∇ · 𝒇 = 0

}
.

Moreover, for any 𝑚 ∈ N0 ≔ N ∪ {0}, we employ the function spaces

H𝑚 ≔ H𝑚 (T2;R) ∩ Ha𝑣g, V𝑚 ≔ H𝑚 (T2;R2) ∩ Hdi𝑣,

where the L2-based Sobolev spaces H𝑚 (T2;R) and H𝑚 (T2;R2) are equipped with
the canonical inner product ⟨·, ·⟩𝑚 and the induced norm ∥ · ∥𝑚. Furthermore, the
standard basis vectors of R2 are denoted by 𝒆1 ≔ [1, 0]⊤ and 𝒆2 ≔ [0, 1]⊤.
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1.3 Main result
Let an arbitrary integer 𝑁 ≥ 4 be fixed throughout. As a generalization of (1.3), we
consider a localized force 𝝃 = 𝝃𝛾1,...,𝛾𝑁 ,𝜎 of the form

𝝃 (𝒙, 𝑡) =
𝑁∑︁
𝑙=1

𝛾𝑙 (𝑡)𝝑𝑙 (𝒙, 𝜎(𝑇ctrl − 𝑡)) +
𝑁+5∑︁
𝑙=𝑁+1

𝛾𝑙 (𝑡)𝝑𝑙 (𝒙) (1.4)

consisting of

• known effectively constructed functions (cf. Sections 2 and 3)

𝝑1, . . . , 𝝑𝑁 : T2 × (0, 1) −→ R2, 𝝑𝑁+1, . . . , 𝝑𝑁+5 : T2 −→ R2,

𝑁+3⋃
𝑙=1

supp(𝝑𝑙) ⊂ ω, supp(𝝑𝑁+4) ∪ supp(𝝑𝑁+5) ⊂ Ω,

• unknown controls 𝛾1, . . . , 𝛾𝑁+5 ∈ L2((0, 𝑇ctrl);R) and 𝜎 ≥ 𝑇−1
ctrl, where

𝛾𝑁+1, . . . , 𝛾𝑁+5 can be expressed by means of 𝛾1, . . . , 𝛾𝑁 .

We will provide a family of possibilities for selecting 𝝑1, . . . , 𝝑𝑁+5. Intuitively,
the functions 𝝑1, . . . , 𝝑𝑁 correspond to the Fourier modes that are allowed to be
triggered by the controls. The additional profiles 𝝑𝑁+1, 𝝑𝑁+2, 𝝑𝑁+3 arise from average
corrections performed at the vorticity level, while the vector fields 𝝑𝑁+4, 𝝑𝑁+5 are
involved in regulating the velocity average. Notably, resting on the assumption
that Ω contains two suitable cuts, 𝝑𝑁+4 and 𝝑𝑁+5 are chosen curl-free.

Theorem 1.1 (Main result). Let 𝑟 ∈ N with 𝑟 ≥ 2 and fix 𝑇ctrl > 0, 𝒖0, 𝒖1 ∈ V𝑟 ,
𝒇 ∈ L2((0, 𝑇ctrl); H𝑟 (T2;R2)), and 𝜀 > 0. There exist a scaling constant 𝜎 ≥ 𝑇−1

ctrl
and 𝑁 + 5 control parameters

𝛾1, . . . , 𝛾𝑁+5 ∈ L2((0, 𝑇ctrl);R)

such that the unique solution 𝒖 ∈ C0( [0, 𝑇ctrl]; V𝑟) ∩ L2((0, 𝑇ctrl); V𝑟+1) to the
Navier–Stokes problem (1.1) with the external force 𝝃 from (1.4) satisfies the
terminal condition

∥𝒖(·, 𝑇ctrl) − 𝒖1∥𝑟 < 𝜀.

Moreover, the coefficients 𝛾𝑁+1, . . . , 𝛾𝑁+5 are determined from 𝛾1, . . . , 𝛾𝑁 through
explicit formulas.

To our knowledge, Theorem 1.1 constitutes the first result in the direction of
Agrachev’s open problem posed in [1, Section 7]. However, strictly speaking, the
original version of the latter problem is not fully resolved in this article. Indeed,
our fixed functions 𝝑1, . . . , 𝝑𝑁 naturally depend on the time variable, while the
formulation of the problem raised in [1] asks for a control of the type (1.2) with
time-independent modes 𝝍1, . . . ,𝝍𝑁 .
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1.4 Methodology
Our strategy for showing Theorem 1.1 is newly developed and promotes viewing
the profiles 𝝑1, . . . , 𝝑𝑁 from (1.4) as “transported Fourier modes”. This approach
comprises explicit ad-hoc constructions and the following main ingredients:

• the return method introduced by Coron in [6] for the stabilization of a
mechanical system, and which has thereafter been applied to numerous
nonlinear partial differential equations (cf. [9, Part 2, Chapter 6]);

• a linear test for approximate controllability developed in [17], and which
involves the notion of observable vector fields introduced in [13];

• a convection strategy on the torus by virtue of rigid translations, based on a
special covering of T2 using overlapping squares (cf. Theorem 3.3);

• a simplified saturation property without length condition (cf. Section 4);

• average corrections with memory (cf. Remark 5.4).

The controllability problem for the velocity is hereby reduced to one for the vorticity,
which then allows to utilize the underlying transport mechanisms of the considered
fluid model. We linearize the vorticity equation around a special return method
profile and derive a related controllability problem for a scalar transport equation.
However, in order to determine the parameters 𝛾1, . . . , 𝛾𝑁+5 in (1.4), we have to
consider a modified transport problem where convection takes place along a vector
field encoding a certain observability property. Concerning the aforementioned
setup, we obtain finite-dimensional controls of the type

𝑔 =
∑︁
ℓ∈K

(𝜁 𝑠ℓ (𝑡) sin(ℓ · 𝒙) + 𝜁 𝑐ℓ (𝑡) cos(ℓ · 𝒙)), (1.5)

where the pairs of integers ℓ = (ℓ1, ℓ2) are taken from a finite family K ⊂ Z2\{0} and
the set K provides the Fourier modes which are allowed to be triggered by the controls.
The coefficients (𝜁 𝑠ℓ , 𝜁

𝑐
ℓ ) in (1.5), which will be used to calculate 𝛾1, . . . , 𝛾𝑁+5, depend

only on time and can be viewed as the true controls. Subsequently, the action of
the force 𝑔 is squeezed into the control region ω. To this end, the background flow
encoding the observability property is interchanged with a return method trajectory
shifting the whole torus T2 until each particle has passed through ω. The latter step
will hereby motivate the particular constructions of the building blocks 𝝑1, . . . , 𝝑𝑁 ,
which are essentially the Fourier modes from (1.5) composed with certain flow
maps. The profiles 𝝑𝑁+1, 𝝑𝑁+2, 𝝑𝑁+3 ensure that the force acting on the vorticity
is average-free. Two more functions 𝝑𝑁+4, 𝝑𝑁+5, which shall be curl-free, are then
required to also act on the velocity average. Next, scaling arguments related to the
return method yield the approximate controllability in a short time by means of
large controls for the original nonlinear vorticity problem. Eventually, the proof of
Theorem 1.1 is concluded by deriving formulas for the velocity controls based on
the previously found vorticity controls.
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1.5 Related literature
There exists a rich literature on controllability problems for incompressible Navier–
Stokes and Euler systems, or other related models. A traditional point of view
has been to seek the controls as abstract elements of infinite-dimensional function
spaces, with significant attention being devoted to the case of bounded domains.
Typically, for such a setup, one aims to obtain interior controls localized within
a small subdomain or controls acting on a small part of the domain’s boundary.
In this context, J.-L. Lions [15] raised several open problems which have so far
inspired more than three decades of fruitful research, while key questions such as
the global approximate controllability for the Navier–Stokes system with the no-slip
boundary condition remain open until the present day. Substantial milestones have
been accomplished by Coron in [7,8], where he obtains by way of his return method
the global exact and approximate controllability for planar Euler and Navier–Stokes
problems respectively. Glass further developed the return method in [12] to address
three-dimensional configurations. A different point of view has been pursued by
Lions and Zuazua in [16], where they achieved exact controllability results for
Galerkin’s approximations of incompressible Navier–Stokes problems by combining
duality arguments with a contraction mapping principle. Several recent advances
regarding the incompressible Navier–Stokes system are due to Coron et al. in [10]
and Liao et al. in [14], noting that this list is far away from being comprehensive
and that many past, as well as contemporary, developments are well captured by the
references therein.

The question of controllability by finite-dimensional controls supported in the
entire domain constitutes a subject of active research, as well. In this case, the
controls are sought to be of a very specific form (cf. (1.2)), but are, so far, not
physically localized in a given subdomain. A major breakthrough in this direction
has been achieved for two-dimensional periodic domains by Agrachev and Sarychev
in [2–4], who developed a geometric control approach that has subsequently been
extended and improved in various ways. For instance, drawing upon the geometric
arguments due to Agrachev and Sarychev, three-dimensional Navier–Stokes problems
have been treated by Shirikyan in [20, 21] and perfect fluids by Nersisyan in [18]. A
new proof for results of the same type has been presented recently by Nersesyan
in [17], where Coron’s return method is employed in combination with a special linear
test. Moreover, Phan and Rodrigues consider in [19] a Navier–Stokes problem which
is posed in a cubical domain with the Lions boundary conditions. A concise and
self-contained account of the Agrachev–Sarychev method, elaborating the example
of the one-dimensional Burgers equation, is provided in [22].

So far, the previous two paragraphs resemble rather disjoint lines of research.
The notion of transported Fourier modes, which are the building blocks of our control
force, is in this regard intended to connect concepts from both worlds. At least
three immediate questions remain. Is it possible to build 𝝑1, . . . , 𝝑𝑁 independent of
time? Can one dispense with the profiles 𝝑𝑁+4 and 𝝑𝑁+5 that are here necessarily
supported along smooth cuts? How to extend the presented method in order to
accommodate flows past physical boundaries?
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1.6 Organization of this article
In Section 2, the proof of Theorem 1.1 is reduced to the resolution of a controllability
problem for the vorticity. In Section 3, the constructions of 𝝑1, . . . , 𝝑𝑁+3 are
completed. Then, a saturation property is characterized in Section 4. Finally, the
key steps from the proof of Theorem 1.1 are carried out in Section 5. Namely,
the control parameters are obtained in Section 5.1, the localization arguments are
developed in Section 5.2, while Section 5.3 explains the passage to the nonlinear
problem. An appendix is concerned with the description of certain cutoff vector
fields used for defining the velocity average controls 𝝑𝑁+4, 𝝑𝑁+5.

2 Proof of the main result unfolded
This section provides the detailed road map for this article. First, a vorticity
formulation of (1.1) is presented, accompanied by a well-posedness result in
Section 2.1. Next, the curled versions of the profiles 𝝑1, . . . , 𝝑𝑁+3 from (1.4)
are described in Section 2.2, noting that 𝝑𝑁+4 and 𝝑𝑁+5 will be chosen curl-free.
Afterwards, in the course of Section 2.3, a version of Theorem 1.1 for the Navier–
Stokes system in vorticity form is established. This constitutes the main part of this
work and several steps are outsourced to subsequent sections. Ultimately, the proof
of Theorem 1.1 is completed in Section 2.4.

We write ∇ ∧ 𝒈 ≔ 𝜕1𝑔2 − 𝜕2𝑔1 for the curl of a vector field 𝒈 = [𝑔1, 𝑔2]⊤ and
denote by 𝑟 ∈ N the regularity parameter from Theorem 1.1. Moreover, we remind
that ω ⊂ Ω represents the small subregion fixed in the beginning. As previously
mentioned, the goal is now to control the time evolution of the vortex

𝑤 = ∇ ∧ 𝒖 : T2 × (0, 𝑇ctrl) −→ R

which solves in T2 × (0, 𝑇ctrl) the incompressible vorticity problem
𝜕𝑡𝑤 − 𝜈Δ𝑤 + (𝒖 · ∇) 𝑤 = ℎ + Iω𝜂,
∇ ∧ 𝒖 = 𝑤, ∇ · 𝒖 = 0,

∫
T2 𝒖(𝒙, ·) d𝒙 = ℵ,

𝑤(·, 0) = 𝑤0,

(2.1)

where the control 𝜂 satisfies supp(𝜂) ⊂ ω and is sought to ensure the terminal
condition

∥𝑤(·, 𝑇ctrl) − 𝑤1∥𝑟−1 < 𝜀. (2.2)

Furthermore, the controllability problem specified by (2.1) and (2.2) involves

• the prescribed states 𝑤0 ≔ ∇ ∧ 𝒖0 and 𝑤1 ≔ ∇ ∧ 𝒖1,

• the known external force ℎ ≔ ∇ ∧ 𝒇 : T2 × [0, 𝑇ctrl] → R,

• the fixed approximation accuracy 𝜀 > 0 and chosen control time 𝑇ctrl > 0,
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along with

• the velocity average contribution ℵ = ℵ𝜎, which belongs to W1,2((0, 1);R2)
and is given in terms of the yet unknown scaling parameter 𝜎 > 0 by means
of the formula

ℵ𝜎 (𝑡) ≔ I[0,𝑇𝜎] (𝑡)
∫
T2
𝒖0(𝒙) d𝒙 + I[𝑇𝜎 ,𝑇ctrl] (𝑡) (𝜎𝒚 +𝑼) (𝜎(𝑡 − 𝑇𝜎)),

𝑇𝜎 ≔ 𝑇ctrl − 𝜎−1,

(2.3)

where the profile 𝒚 ∈ C∞
0 ((0, 1);R2) in (2.3) only depends on ω and is

explicitly constructed in Section 3.3, while 𝑼 ∈ W1,2((0, 1);R2) is selected
such that

∀𝑡 ∈ [0, 1/4] : 𝑼(𝑡) =
∫
T2
𝒖0(𝒙) d𝒙, ∀𝑡 ∈ [3/4, 1] : 𝑼(1) =

∫
T2
𝒖1(𝒙) d𝒙,

• the control force 𝜂 = 𝜂𝛾1,...,𝛾𝑁 ,𝜎 ≔ ∇ ∧ 𝝃, which shall be explicitly described
up to the yet unknown coefficients 𝛾1, . . . , 𝛾𝑁 and 𝜎 ≥ 𝑇−1

ctrl (cf. Section 2.2).

2.1 Well-posedness
For any 𝑚 ∈ N, let 𝚼 : H𝑚 × R2 −→ V𝑚+1 be the operator that assigns to 𝑧 ∈ H𝑚

and 𝑨 ∈ R2 the unique vector field 𝒈 = 𝚼(𝑧, 𝑨) ∈ V𝑚+1 satisfying

∇ ∧ 𝒈 = 𝑧, ∇ · 𝒈 = 0,
∫
T2

𝒈(𝒙) d𝒙 = 𝑨. (2.4)

The operator 𝚼 can be expressed by means of the formula

𝚼(𝑧, 𝑨) ≔
[
𝜕2𝜑

−𝜕1𝜑

]
+ 1∫
T2 d𝒙

𝑨,

where the stream function 𝜑 ∈ H𝑚+2 is the unique solution to the Poisson problem

−Δ𝜑 = 𝑧,

∫
T2
𝜑(𝒙) d𝒙 = 0.

We proceed with a few remarks concerning the global well-posedness of the
two-dimensional Navier–Stokes system. Here, for any given time 𝑇 > 0 and a
regularity parameter 𝑚 ∈ N, the solution space for the vorticity is chosen as

X𝑚
𝑇 ≔ C0( [0, 𝑇]; H𝑚) ∩ L2((0, 𝑇); H𝑚+1),

endowed with the canonical norm

∥ · ∥X𝑚
𝑇
≔ ∥ · ∥C0 ( [0,𝑇];H𝑚) + ∥ · ∥L2 ((0,𝑇);H𝑚+1) .
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Lemma 2.1. For any 𝑤0 ∈ H𝑚, 𝑨 ∈ W1,2((0, 𝑇);R2), and ℎ ∈ L2((0, 𝑇); H𝑚−1),
there exists a unique solution 𝑤 = 𝑆𝑇 (𝑤0, ℎ, 𝑨) ∈ X𝑚

𝑇
to the vorticity equation

𝜕𝑡𝑤 − 𝜈Δ𝑤 + (𝚼(𝑤, 𝑨) · ∇) 𝑤 = ℎ, 𝑤(·, 0) = 𝑤0, (2.5)

where the resolving operator for (2.5) is denoted by

𝑆𝑇 (·, ·, ·) : H𝑚 × L2((0, 𝑇); H𝑚−1) × W1,2((0, 𝑇);R2) −→ X𝑚
𝑇 , (𝑤0, ℎ, 𝑨) ↦−→ 𝑤.

Proof. Given any force 𝒇 ∈ L2((0, 𝑇); V𝑚) with ∇ ∧ 𝒇 = ℎ and initial data
𝒖0 ≔ 𝚼(𝑤0, 𝑨(0)) ∈ V𝑚+1, one may reduce the existence and regularity statements
of Lemma 2.1 to a corresponding one for the two-dimensional Navier–Stokes problem
in velocity form

𝜕𝑡𝒖 − 𝜈Δ𝒖 + (𝒖 · ∇) 𝒖 + ∇𝑝 = 𝒇 + 𝜕𝑡𝒂, ∇ · 𝒖 = 0, 𝒖(·, 0) = 𝒖0, (2.6)

where the function

𝒂(𝑡) ≔ 𝑨(𝑡) −
∫ 𝑡

0

∫
T2

𝒇 (𝒙, 𝑠) d𝒙 d𝑠

is chosen such that the average of the solution 𝒖(𝑡) to (2.6) is equal to 𝑨(𝑡).
Regarding the well-posedness of (2.6), we refer, for instance, to [5, 23]. The
uniqueness of solutions to (2.5) in the space X𝑚

𝑇
is a consequence of the usual energy

estimates. □

2.2 A brief description of the controls
We further specify our ansatz for the control force 𝜂 = 𝜂𝛾1,...,𝛾𝑁 ,𝜎 in (2.1). Hereto, it
can be assumed, without loss of generality, that the integer 𝑁 is even, as otherwise
the case 𝑁 − 1 may be considered instead. Moreover, a family of trigonometric
functions is denoted by

𝑠ℓ (𝒙) ≔ sin(ℓ · 𝒙), 𝑐ℓ (𝒙) ≔ cos(ℓ · 𝒙), ℓ ∈ Z2
∗, (2.7)

where Z2
∗ ≔ Z2 \ {0}. We continue by selecting a subset K ⊂ Z2

∗ of cardinality
𝑁/2 such that Z2 = spanZ(K). Subsequently, we perform a renaming of the type
(𝛾𝑠ℓ)ℓ∈K = (𝛾 𝑗 ) 𝑗∈{1,...,𝑁/2} and (𝛾𝑐ℓ )ℓ∈K = (𝛾 𝑗 ) 𝑗∈{𝑁/2+1,...,𝑁}, followed by proposing
for the force 𝜂 an ansatz of the form

𝜂(𝒙, 𝑡) ≔ 𝜎I[𝑇𝜎 ,𝑇ctrl] (𝑡)𝜂(𝒙, 𝜎(𝑡 − 𝑇𝜎)), (2.8)

where the auxiliary profile 𝜂 will be introduced below, 𝜎 ≥ 𝑇−1
ctrl depends on the

prescribed data, 𝑇𝜎 = 𝑇ctrl − 𝜎−1 is as in (2.3), and the presence of the indicator
function I[𝑇𝜎 ,𝑇ctrl] in (2.8) signals that the controls are only active during a short time
interval of length 𝜎−1.
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Before presenting the detailed ansatz for the force 𝜂 appearing in (2.8), let us
outline the underlying motivations. At this point, we foreshadow the analysis of
Sections 3-5 and assume that certain control parameters

(𝜁 𝑠ℓ )ℓ∈K = (𝜁 𝑗 ) 𝑗∈{1,...,𝑁/2}, (𝜁 𝑐ℓ )ℓ∈K = (𝜁 𝑗 ) 𝑗∈{𝑁/2+1,...,𝑁}

have already been retrieved by solving a controllability problem for a linear transport
equation driven by a force of the type (1.5). We then define a physically localized
control force 𝜂 : T2 × [0, 1] −→ R of the form

𝜂(𝒙, 𝑡) ≔ 𝜒(𝒙)
𝐾∑︁
𝑗=1
I[𝑡 𝑗𝑎 ,𝑡 𝑗𝑏]

(𝑡)
∑︁
ℓ∈K

[
𝜁 𝑠ℓ (𝜏𝑗 (𝑡))𝑠ℓ (𝚵(𝒙, 𝑡)) + 𝜁

𝑐
ℓ (𝜏𝑗 (𝑡))𝑐ℓ (𝚵(𝒙, 𝑡))

]
,

(2.9)
which shall become meaningful in the course of Section 5.2. In (2.9), anticipating
the constructions of Section 3, the cutoff 𝜒 is supported in ω, the square number
𝐾 ∈ N determines a covering of the torus by squares smaller than ω, the flow map 𝚵
is essentially responsible for squeezing the actions of global controls into the region
ω, (𝜏𝑙 : [0, 1] −→ [0, 1])𝑙∈{1,...,𝐾} is a family of parameter changes, and the numbers

0 < 𝑡1𝑎 < 𝑡1𝑏 < 𝑡
2
𝑎 < · · · < 𝑡𝐾𝑏 < 1, 𝑇★ = 𝑡𝑙𝑎 − 𝑡𝑙𝑏, 3𝑇★ = 𝑡𝑙+1

𝑎 − 𝑡𝑙𝑎

give rise to a partition of the reference time interval [0, 1]. A key problem, however,
is that we are unable to ensure the expression in (2.9) to have zero average, which
renders the hypothetical choice 𝜂 = 𝜂 unsuitable. In order to transship this issue,
we are going to put in place special smooth cutoff functions �̃� and ( �̃�𝑙)𝑙∈{1,...,𝐾}
supported in ω, noting that the family ( �̃�𝑙)𝑙∈{1,...,𝐾} shall only consist of the two
different elements �̃�↗ and �̃�→, in the sense that (cf. (3.5))

�̃�𝑙 =

{
�̃�↗ = top-right shift of �̃�, if 𝑙 is a multiple of

√
𝐾,

�̃�→ = right shift of �̃�, otherwise.

We then define 𝜂 in (2.8) as the zero-average version of 𝜂 given by

𝜂(𝒙, 𝑡) = 𝜂𝜁1,...,𝜁𝑁 (𝒙, 𝑡)

≔ 𝜂(𝒙, 𝑡) −
𝐾∑︁
𝑖=1

𝑖∑︁
𝑗=1
I[𝑡𝑖𝑎 ,𝑡𝑖𝑏]

(𝑡) �̃�𝑖 (𝒙)
∫
T2
𝜂(𝒛, 𝑡 − 3( 𝑗 − 1)𝑇★) d𝒛

+
𝐾∑︁
𝑖=2

𝑖−1∑︁
𝑘=1
I[𝑡𝑖𝑎 ,𝑡𝑖𝑏]

(𝑡) �̃�(𝒙)
∫
T2
𝜂(𝒛, 𝑡 − 3𝑘𝑇★) d𝒛,

(2.10)

which might appear artificially sophisticated at first, yet ensures that 𝜂 constitutes
a suitable control. In view of the arguments carried out in Section 5.2, where
the characteristic curves of certain controlled transport problems are studied, the
definition in (2.10) can be interpreted as the realization of an average correction
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strategy with memory (cf. Remark 5.4). The parcels passing through the control
region, when being transported along an appropriate vector field, are divided into
several groups. Some are controlled as desired, while others are asked to further
carry around the average corrections until visiting the control region again. In
order to see that 𝜂 defined via (2.10) is average-free, we anticipate that the cutoff
functions �̃� and �̃�𝑖 shall be of average 1 (cf. Section 3.2). Accordingly, when
integrating in (2.10) over T2 and accounting for various cancellations, one observes∫

T2
𝜂(𝒙, 𝑡) d𝒙 =

∫
T2
𝜂(𝒛, 𝑡) d𝒛 −

𝐾∑︁
𝑖=1

𝑖∑︁
𝑗=1
I[𝑡𝑖𝑎 ,𝑡𝑖𝑏]

(𝑡)
∫
T2
𝜂(𝒛, 𝑡 − 3( 𝑗 − 1)𝑇★) d𝒛

+
𝐾∑︁
𝑖=2

𝑖−1∑︁
𝑘=1
I[𝑡𝑖𝑎 ,𝑡𝑖𝑏]

(𝑡)
∫
T2
𝜂(𝒛, 𝑡 − 3𝑘𝑇★) d𝒛

= 0.

In summary, the control force 𝜂 assumes the form

𝜂(𝒙, 𝑡) =
𝑁∑︁
𝑙=1

𝛾𝑙 (𝑡)𝜂𝑙 (𝒙, 𝜎(𝑡 − 𝑇𝜎)) +
𝑁+3∑︁
𝑙=𝑁+1

𝛾𝑙 (𝑡)𝜂𝑙 (𝒙), (2.11)

where
𝛾𝑙 (𝑡) ≔ 𝜎I[𝑇𝜎 ,𝑇ctrl] (𝑡)�̃�𝑙 (𝜎(𝑡 − 𝑇𝜎)), (2.12)

with

�̃�𝑙 (𝑡) ≔



∑𝐾
𝑗=1 I[𝑡 𝑗𝑎 ,𝑡 𝑗𝑏]

(𝑡)𝜁𝑙 (𝜏𝑗 (𝑡)), 𝑙 ≤ 𝑁,∑𝐾
𝑖=2

∑𝑖−1
𝑘=1 I[𝑡𝑖𝑎 ,𝑡𝑖𝑏]

(𝑡)
∫
T2 𝜂(𝒛, 𝑡 − 3𝑘𝑇★) d𝒛, 𝑙 = 𝑁 + 1,

−∑√
𝐾

𝑖=1
∑𝑖

√
𝐾

𝑗=1 I[𝑡𝑖
√
𝐾

𝑎 ,𝑡𝑖
√
𝐾

𝑏
] (𝑡)

∫
T2 𝜂(𝒛, 𝑡 − 3( 𝑗 − 1)𝑇★) d𝒛, 𝑙 = 𝑁 + 2,

−𝛾𝑁+2(𝑡) −
∑𝐾
𝑖=1

∑𝑖
𝑗=1 I[𝑡𝑖𝑎 ,𝑡𝑖𝑏]

(𝑡)
∫
T2 𝜂(𝒛, 𝑡 − 3( 𝑗 − 1)𝑇★) d𝒛, 𝑙 = 𝑁 + 3.

(2.13)
Inserting (2.9) through (2.13) into (2.12) provides hereby formulas for 𝛾𝑁+1, 𝛾𝑁+2,
and 𝛾𝑁+3 in terms of 𝛾1, . . . , 𝛾𝑁 . Furthermore, owing to the previously fixed
notations (𝑠ℓ)ℓ∈K = (𝑠 𝑗 ) 𝑗∈{1,...,𝑁/2} and (𝑐ℓ)ℓ∈K = (𝑐 𝑗 ) 𝑗∈{𝑁/2+1,...,𝑁}, the modes 𝜂𝑙 in
(2.12) are explicitly given by way of

𝜂𝑙 (𝒙, 𝑡) =



𝜒(𝒙)𝑠𝑙 (𝚵(𝒙, 𝑡)) , 𝑙 ∈ {1, . . . , 𝑁/2},
𝜒(𝒙)𝑐𝑙 (𝚵(𝒙, 𝑡)) , 𝑙 ∈ {𝑁/2 + 1, . . . , 𝑁},
�̃�(𝒙), 𝑙 = 𝑁 + 1,
�̃�↗(𝒙), 𝑙 = 𝑁 + 2,
�̃�→(𝒙), 𝑙 = 𝑁 + 3.
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The yet unspecified objects 𝐾 , 𝜒, �̃�, ( �̃�𝑙)𝑙∈{1,...,𝐾}, 𝚵, 𝑇★, and (𝑡𝑙𝑎, 𝑡𝑙𝑏, 𝜏𝑙)𝑙∈{1,...,𝐾}
are chosen effectively in Section 3 and solely depend on the fixed control region ω.
In particular, they are independent of the initial state, the target state, the accuracy
parameter, and the control time. In this sense, noting that 𝜎 is a scaling constant and
𝛾𝑁+1, 𝛾𝑁+2, 𝛾𝑁+3 are expressed in terms of (𝜁 𝑠ℓ , 𝜁

𝑐
ℓ )ℓ∈K via (2.12), the 𝑁 unknown

parameters (𝜁 𝑠ℓ , 𝜁
𝑐
ℓ )ℓ∈K ⊂ L2((0, 1);R) appearing explicitly in (2.8)–(2.10) are the

actual controls in the system (1.1).

Example 2.2. A key aspect of this article is the possibility to choose 𝑁 = 4 in
Theorem 1.1. To this end, let us take K ≔ {[1, 0]⊤, [0, 1]⊤} and observe that

{𝑠ℓ (𝑥1, 𝑥2), 𝑐ℓ (𝑥1, 𝑥2)}ℓ∈K = {sin(𝑥1), cos(𝑥1), sin(𝑥2), cos(𝑥2)} .

As a result, the force 𝜂 is of the form

𝜂(𝒙, 𝑡) = 𝜒(𝒙)
[
𝜁1(𝑡) sin (Φ(𝒙, 𝑡)) + 𝜁2(𝑡) sin (Ψ(𝒙, 𝑡))

+ 𝜁3(𝑡) cos (Φ(𝒙, 𝑡)) + 𝜁4(𝑡) cos (Ψ(𝒙, 𝑡))
]
,

where the parameters (𝜁𝑖)𝑖∈{1,...,4} are given by

𝜁𝑖 (𝑡) ≔
𝐾∑︁
𝑗=1
I[𝑡 𝑗𝑎 ,𝑡 𝑗𝑏]

(𝑡)𝜁𝑖 (𝜏𝑗 (𝑡)), 𝑖 ∈ {1, . . . , 4}

and 𝚵 = [Φ,Ψ]⊤ is the flow determined in Section 3.4.

2.3 Controllability of the vorticity formulation
We establish two controllability results for the vorticity formulation (2.1). Several
key arguments are outsourced to Section 5. To start with, we let 𝑘 ≔ 𝑟 − 1, with
𝑟 ≥ 2 from Theorem 1.1, and consider for any 𝛿 > 0 the scaled velocity average
contributions

ℵ̃𝛿 (𝑡) ≔
∫
T2

(
𝛿−1𝒚(𝒙, 𝛿−1𝑡) +𝑼(𝛿−1𝑡)

)
d𝒙. (2.14)

In (2.14), the profile 𝑼 is the one from (2.3) and connects the averages of the
prescribed initial and target velocity fields. Moreover, the function 𝒚 will be explicitly
constructed in Section 3.3 and corresponds to a convection strategy on the torus.
Further, it is reminded that, for given control parameters (𝜁𝑙)𝑙∈{1,...,𝐾} ⊂ L2((0, 𝑇);R),
the force 𝜂 = 𝜂𝜁1,...,𝜁𝑁 is defined in (2.10).

The following theorem, which is proved in Section 5.3, states the approximate
controllability of the vorticity formulation (2.1) in small time via large controls.
The “smallness” of the terminal time and the “largeness” of the controls are hereby
reciprocal.
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Theorem 2.3 (cf. Theorem 5.6). For any ℎ ∈ L2((0, 1); H𝑘−1) and 𝑤0, 𝑤1 ∈ H𝑘+1,
there exist control parameters (𝜁𝑙)𝑙∈{1,...,𝑁} ⊂ L2((0, 1);R) such that the sequence
of solutions (𝑤𝛿 ∈ X𝑘

𝛿
)𝛿>0 to the respective vorticity problems

𝜕𝑡𝑤𝛿−𝜈Δ𝑤𝛿+
(
𝚼(𝑤𝛿, ℵ̃𝛿) · ∇

)
𝑤𝛿 = ℎ+𝛿−1𝜂𝜁1,...,𝜁𝑁 (·, 𝛿−1·), 𝑤𝛿 (·, 0) = 𝑤0 (2.15)

satisfies
𝑤𝛿 (·, 𝛿) −→ 𝑤1 in H𝑘 as 𝛿 −→ 0. (2.16)

Moreover, the convergence in (2.16) is uniform with respect to 𝑤0, 𝑤1 from a bounded
subset of H𝑘+1 and ℎ from a bounded subset of L2((0, 1); H𝑘−1).

The next theorem is concerned with the approximate controllability of (2.1)
on the original time interval [0, 𝑇ctrl], thereby constituting a vorticity version of
Theorem 1.1.

Theorem 2.4. Let 𝑇ctrl > 0, ℎ ∈ L2((0, 𝑇ctrl); H𝑘 ), 𝑤0, 𝑤1 ∈ H𝑘 , and 𝜀 > 0 be
arbitrary. There exist 𝜎 ≥ 𝑇−1

ctrl and control parameters

(𝜁𝑙)𝑙∈{1,...,𝑁} ⊂ L2((0, 1);R)

such that the unique solution 𝑤 ∈ X𝑘
𝑇ctrl

to (2.1), where 𝜂 is obtained from (𝜁𝑙)𝑙∈{1,...,𝑁}
through (2.11)–(2.13), satisfies the terminal condition

∥𝑤(·, 𝑇ctrl) − 𝑤1∥𝑘 < 𝜀. (2.17)

Proof. The idea is to first let the uncontrolled solution to (2.1) evolve for a while, just
to activate proper controls shortly before the terminal time is reached (cf. Figure 3).
However, as we want 𝜂 to be exactly of the form (2.8), the main difficulty consists now
of selecting via Theorem 2.3 a value of 𝛿 > 0 which allows switching on the control
precisely at the time 𝑇ctrl − 𝛿 while reaching the target region at 𝑡 = 𝑇ctrl. Throughout
the proof, the initial velocity average is abbreviated by 𝑼0 ≔

∫
T2 𝒖0(𝒙) d𝒙.

Step 1. Determining a suitable 𝛿 > 0. We begin by fixing an arbitrary vortex
𝑤1 ∈ H𝑘+1 such that ∥𝑤1 − 𝑤1∥𝑘 < 𝜀/2, which is always possible by density.
Moreover, let 𝑤0 ≔ 𝑆𝑇ctrl (𝑤0, ℎ,𝑼0) |𝑡=𝑇ctrl

be the state that is reached when the
control is inactive during the whole time interval [0, 𝑇ctrl]. Due to the assumption
that ℎ ∈ L2((0, 𝑇ctrl); H𝑘 ), one can verify with the aid of Lemma 2.1 and known
parabolic smoothing effects (cf. [11, 23]) that 𝑆𝑇ctrl (𝑤0, ℎ,𝑼0) ∈ C0((0, 𝑇ctrl]; H𝑘+1),
hence 𝑤0 ∈ H𝑘+1. By applying Theorem 2.3 with the initial and target states 𝑤0
and 𝑤1 respectively, while defining ℎ(·, 𝑇ctrl − 𝑠) = 0 if 𝑠 > 𝑇ctrl, one obtains a small
number 𝛿 ∈ (0, 𝑇ctrl) and control parameters (𝜌𝑙)𝑙∈{1,...,𝑁} ⊂ L2((0, 1);R) such that
the function

𝑤𝛿 ≔ 𝑆𝛿

(
𝑤0, ℎ(·, 𝑇ctrl − ·) + 𝛿−1𝜂𝜌1,...,𝜌𝑁 (·, 𝛿−1·), ℵ̃𝛿

)
(2.18)
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meets the terminal condition

∥𝑤𝛿 (·, 𝛿) − 𝑤1∥𝑘 < 𝜀/2. (2.19)

Then, since 𝑆𝑇ctrl (𝑤0, ℎ,𝑼0) ∈ C0((0, 𝑇ctrl]; H𝑘+1), and because Theorem 2.3 allows
choosing 𝛿 uniformly with respect to initial data from a bounded subset of H𝑘+1, we
can assume 𝛿 ∈ (0, 𝑇ctrl) to be sufficiently small such that (2.19) remains valid when
𝑤0 is replaced by a different state from a bounded subset 𝐵 ⊂ H𝑘+1 with{

𝑆𝑇ctrl (𝑤0, ℎ,𝑼0) |𝑡=𝑠 | 𝑠 ∈ [𝑇ctrl − 𝛿, 𝑇ctrl]
}
⊂ 𝐵.

Now, the value of 𝛿 is set and this step is complete. However, for the sake of clarity,
let us make two additional remarks.

First remark. The function 𝑤𝛿 together with the associated controls (𝜌𝑙)𝑙∈{1,...,𝑁}
will not be used in the sequel, as they were only introduced for the purpose of
explaining the choice of 𝛿 > 0. In particular, we only took in (2.18) the external
force time reversed in order to build a controlled trajectory defined on a suitably
short time interval [0, 𝛿] without actually knowing 𝛿 beforehand.

Second remark. Since the convergence property (2.16) in Theorem 2.3 is
uniform with respect to prescribed external forces from a bounded subset of
L2((0, 1); H𝑘−1), by noticing that∫ 𝛿

0
∥ℎ(·, 𝑇ctrl − 𝑠)∥2

𝑘−1 d𝑠 =
∫ 𝛿

0
∥ℎ(·, 𝑇ctrl − 𝛿 + 𝑠)∥2

𝑘−1 d𝑠, (2.20)

one can infer that also

𝑤𝛿 ≔ 𝑆𝛿

(
𝑤0, ℎ(·, 𝑇ctrl − 𝛿 + ·) + 𝛿−1𝜂𝜌1,...,𝜌𝑁 (·, 𝛿−1·), ℵ̃𝛿

)
(2.21)

satisfies the terminal condition

∥𝑤𝛿 (·, 𝛿) − 𝑤1∥𝑘 < 𝜀/2. (2.22)

The trajectory 𝑤𝛿 from (2.21) involves the correct external forcing, but is only of
illustrative purpose here. Notably, since the forcing ℎ(·, 𝑇ctrl − 𝛿 + ·) depends on 𝛿,
we could not have resorted to Theorem 2.3 for finding 𝛿 such that 𝑤𝛿 defined via
(2.21) obeys (2.22) in the first place, as this is a chicken or egg problem.

Step 2. Gluing two trajectories. By applying Theorem 2.3 with the initial state
𝑤𝛿,0 ≔ 𝑆𝑇ctrl−𝛿 (𝑤0, ℎ,𝑼0) |𝑡=𝑇ctrl−𝛿 and the now known external force ℎ(·, 𝑇ctrl − 𝛿 + ·),
we retrieve control parameters (𝜁𝑙)𝑙∈{1,...,𝑁} ⊂ L2((0, 1);R) and a number 𝜘0 > 0
such that the function

𝑤𝜘 = 𝑆𝜘

(
𝑤𝛿,0, ℎ(·, 𝑇ctrl − 𝛿 + ·) + 𝜘−1𝜂𝜁1,...,𝜁𝑁 (·, 𝜘−1·), ℵ̃𝜘

)
(2.23)
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fulfills the terminal condition

∥𝑤𝜘(·, 𝜘) − 𝑤1∥𝑘 < 𝜀/2 (2.24)

for any 𝜘 ∈ (0, 𝜘0). Because the convergence property (2.16) in Theorem 2.3 is
uniform with respect to initial data from a bounded subset of H𝑘+1 and external
forces from a bounded subset of L2((0, 1); H𝑘−1), keeping (2.20) in mind, we can
take 𝜘 = 𝛿 < 𝜘0 in (2.23).

As a result, the proof of Theorem 2.4 can now be concluded by choosing 𝜎 ≔ 𝛿−1

and defining

𝑤(𝒙, 𝑡) ≔
{
𝑆𝑇ctrl (𝑤0, ℎ,𝑼0) (𝒙, 𝑡) when (𝒙, 𝑡) ∈ T2 × [0, 𝑇𝜎],
𝑤𝜎−1 (𝒙, 𝑡 − 𝑇𝜎) when (𝒙, 𝑡) ∈ T2 × [𝑇𝜎, 𝑇ctrl],

(2.25)

where 𝑇𝜎 = 𝑇ctrl − 𝜎−1. By Lemma 2.1, the vortex 𝑤 from (2.25) constitutes the
unique solution to (2.1) with the control 𝜂 = 𝜂𝜁1,...,𝜁𝑁 ,𝜎 as specified in (2.8). Owing
to (2.24) with 𝜘 = 𝜎−1, the function 𝑤 defined in (2.25) obeys (2.17). □

𝑤0

𝑤0

𝑤1

𝑤1

𝑤𝛿,0

𝜀

𝜂 = 0

𝜂 ≠ 0

Figure 3: A sketch of several ideas from the proof of Theorem 2.4. Starting at 𝑡 = 0 with the original
initial state 𝑤0, we first follow the uncontrolled trajectory (dashed line with arrow) until reaching
a state 𝑤 𝛿,0 that is very close to the terminal point 𝑤0 of the uncontrolled trajectory. Hereto, we
determine a good 𝛿 > 0 for steering the system from the state 𝑤0 to a small neighborhood of the
regularized target vorticity 𝑤1. After replacing the starting point of the controlled trajectory by 𝑤 𝛿,0,
we can still employ the same 𝛿 for reaching a small neighborhood of 𝑤1 with the help of different
controls.
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2.4 Conclusion of the main theorem
We can now conclude Theorem 1.1 as a corollary of Theorem 2.4. To this
end, by resorting to the elliptic theory for the div-curl problem (2.4), we fix any
constant 𝐶0 > 0 such that

∥𝚼(𝑧, 𝑨)∥𝑘+1 ≤ 𝐶0(∥𝑧∥𝑘 + |𝑨|) (2.26)

for all 𝑧 ∈ H𝑘 and 𝑨 ∈ R2. Moreover, we denote by 𝜀 > 0 the approximation
accuracy parameter selected in Theorem 1.1.

Step 1. Determining the control parameters. To begin with, we apply Theo-
rem 2.4 with the data chosen as

𝑤0 ≔ ∇ ∧ 𝒖0, 𝑤1 ≔ ∇ ∧ 𝒖1, ℎ ≔ ∇ ∧ 𝒇 .

This provides 𝜎0 ≥ 𝑇−1
ctrl and the existence of controls 𝜁1, . . . 𝜁𝑁 ∈ L2((0, 𝑇ctrl);R)

such that the unique solution 𝑤 to (2.1), with 𝜂 = 𝜂𝜁1,...𝜁𝑁 ,𝜎 given by (2.8), satisfies

∥𝑤(·, 𝑇ctrl) − 𝑤1∥𝑘 <
𝜀

𝐶0
, (2.27)

for any 𝜎 ≥ 𝜎0 and where 𝐶0 > 0 is the constant determined by (2.26).

Step 2. Integrating the vorticity controls. Anticipating the definitions of the
cutoffs 𝜒, �̃�, and ( �̃�𝑙)𝑙∈{1,...,𝐾} from Section 3.2, which are used in the description
of 𝜂 given in Section 2.2, we can choose a point 𝒑ω = [𝑝ω1 , 𝑝

ω
2 ]

⊤ ∈ T2, a small
number 𝑑ω > 0, and a length parameter 𝐿ω > 0 such that the square

Oω ≔ 𝒑ω + [0, 𝐿ω]2

satisfies
supp(𝜂) ⊂ Oω ⊂ ω, dist(Oω, 𝜕ω) > 𝑑ω,

where 𝜕ω is the boundary of the control region ω ⊂ T2. Therefore, inspired by
[10, Appendix A.2], we denote the auxiliary functions

𝑎(𝑥1, 𝑥2, 𝑡) ≔
∫ 𝑥1

𝑝ω1

𝜂(𝑠, 𝑥2, 𝑡) d𝑠, 𝑏(𝑥2, 𝑡) ≔
∫ 𝑥2

𝑝ω2

𝑎(𝑝ω1 + 𝐿ω, 𝑠, 𝑡) d𝑠.

Moreover, we select a profile ρ ∈ C∞(T1;R) which satisfies

supp(ρ) ⊂ (𝑝ω1 , 𝑝
ω
1 + 𝐿ω + 𝑑ω), ρ(𝑠) = 1 for 𝑠 ∈ (𝑝ω1 + 𝐿ω, 𝑝ω1 + 𝐿ω + 𝑑ω/2),
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where T1 ≔ R/2𝜋Z stands for the one-dimensional torus. Another auxiliary profile
is then given via

𝑐(𝑥1, 𝑥2, 𝑡) ≔ 𝑎(𝑥1, 𝑥2, 𝑡) − ρ(𝑥1)𝑎(𝑝ω1 + 𝐿ω, 𝑥2, 𝑡).

Piecing together these building blocks, a vector field 𝝃 = [𝜉1, 𝜉2]⊤ is given by way
of assigning to all (𝑥1, 𝑥2, 𝑡) ∈ T2 × (0, 𝑇ctrl) the values

𝜉1(𝑥1, 𝑥2, 𝑡) ≔
{
−𝜒(𝑥1, 𝑥2) dρ

d𝑠 (𝑥1)𝑏(𝑥2, 𝑡), 𝑥1 ∈ [0, 𝑝ω1 + 𝐿ω + 𝑑ω/4),
0, 𝑥1 ∈ [𝑝ω1 + 𝐿ω + 𝑑ω/4, 2𝜋)

(2.28)

and

𝜉2(𝑥1, 𝑥2, 𝑡) ≔


0, 𝑥1 ∈ [0, 𝑝ω1 ),
𝜒(𝑥1, 𝑥2)𝑐(𝑥1, 𝑥2, 𝑡), 𝑥1 ∈ [𝑝ω1 , 𝑝

ω
1 + 𝐿ω + 𝑑ω/4],

0, 𝑥1 ∈ (𝑝ω1 + 𝐿ω + 𝑑ω/4, 2𝜋),
(2.29)

where the phantom cutoff 𝜒 ∈ C∞(T2; [0, 1]) obeys 𝜒𝝃 = 𝝃 and is selected such
that the proclaimed profiles 𝝑1, . . . , 𝝑𝑁+3 in (1.4) will be supported in ω, which, for
instance, is achieved by requiring that

𝒑ω + [0, 𝐿ω + 𝑑ω/2]2 ⊂ {𝜒 = 1} ⊂ supp(𝜒) ⊂ ω.

The force 𝝃 = 𝝃𝜁1,...,𝜁𝑁 ,𝜎, defined through (2.28) and (2.29), enjoys (at least) the
same regularity as 𝜂𝜁1,...,𝜁𝑁 ,𝜎, thus 𝝃 ∈ L2((0, 𝑇ctrl); C∞(T2;R2)). In addition, by
noting that ∫T2 𝜂(𝒙, 𝑡) d𝒙 = 0 and supp(𝜂(·, 𝑡)) ⊂ ω hold for all 𝑡 ∈ [0, 𝑇ctrl], one can
infer the properties

supp(𝝃 (·, 𝑡)) ⊂ ω, ∇ ∧ (𝝃 (·, 𝑡)) = 𝜂(·, 𝑡).

Finally, after obtaining the explicit profiles 𝝑1, . . . , 𝝑𝑁+3 by inserting the expression
(2.8) into (2.28) and (2.29), one arrives at the representation

𝝃 (𝒙, 𝑡) =
𝑁∑︁
𝑙=1

𝛾𝑙 (𝑡)𝝑𝑙 (𝒙, 1 − 𝜎(𝑇ctrl − 𝑡)) +
𝑁+3∑︁
𝑙=𝑁+1

𝛾𝑙 (𝑡)𝝑𝑙 (𝒙) + 𝝃 (𝒙, 𝑡), (2.30)

where the coefficients (𝛾 𝑗 ) 𝑗∈{1,...,𝑁} are those from (2.11), and it solely remains to
determine the part of 𝝃 acting on the velocity average in (1.1), namely

𝝃 (𝒙, 𝑡) ≔ 𝛾𝑁+4(𝑡)𝝑𝑁+4 + 𝛾𝑁+5(𝑡)𝝑𝑁+5.

Up to composing 𝝑𝑙 (𝒙, ·) for 𝑙 ∈ {1, . . . , 𝑁} with the transformation 𝑡 ↦→ 1 − 𝑡, one
can also write (2.30) in the form (1.3), accepting the abuse of notation

𝝑𝑙 (𝒙, 1 − 𝜎(𝑇ctrl − 𝑡)) = 𝝑𝑙 (𝒙, 𝜎(𝑇ctrl − 𝑡)).
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Step 3. Choosing 𝝑𝑁+4, 𝝑𝑁+5. We select 𝝑𝑁+4, 𝝑𝑁+5 ∈ C∞(T2;R2) in an explicit
way only depending on Ω. Subsequently, the controls 𝛾𝑁+4, 𝛾𝑁+5 ∈ L2((0, 𝑇ctrl);R)
are determined. To this purpose, let us fix two cutoff vector fields 𝚲,𝚺 ∈ C∞(T2;R2)
satisfying R2 = spanR{∫T2 𝚲 d𝒙, ∫T2 𝚺 d𝒙} and

∇ ∧ 𝚲 = ∇ ∧ 𝚺 = 0, supp(𝚲) ∪ supp(𝚺) ⊂ Ω. (2.31)

This choice is possible due to the assumption that Ω contains two curves C1, C2 ⊂ Ω

with the property that T2 \ (C1 ∪C2) is simply-connected (cf. Figure 1). For the sake
of simplicity, let us for the moment being assume that C1 and C2 can be chosen as the
graphs of smooth functions over the vertical and horizontal axis respectively, noting
that the arguments for the general case are provided in Theorem A.1. Therefore, one
can explicitly construct two functions υ1, υ2 : T1 −→ R such that

𝑥1 + υ1(𝑥2) = 0 ⇐⇒ (𝑥1, 𝑥2) ∈ C1, 𝑥2 + υ2(𝑥1) = 0 ⇐⇒ (𝑥1, 𝑥2) ∈ C2.

Furthermore, we fix a small number 𝑙 > 0 and a cutoff 𝛽 ∈ C∞(T1;R+) with

∀𝑖 ∈ {1, 2} : dist(C𝑖, 𝜕Ω) < 𝑙, supp(𝛽) ⊂ (−𝑙/2, 𝑙/2), 𝛽(0) > 0.

On this groundwork, we then define the vector fields

𝚲 ≔

[
𝛽(𝑥1 + υ1(𝑥2))

𝛽(𝑥1 + υ1(𝑥2)) dυ1
d𝑠 (𝑥2)

]
, 𝚺 ≔

[
𝛽(𝑥2 + υ2(𝑥1)) dυ2

d𝑠 (𝑥1)
𝛽(𝑥2 + υ2(𝑥1))

]
, (2.32)

which obey (2.31) and have linearly independent averages, followed by assigning the
new names

𝝑𝑁+4 ≔ 𝚲, 𝝑𝑁+5 ≔ 𝚺.

Now, we can choose the controls 𝛾𝑁+4 and 𝛾𝑁+5, depending on all the data of the
controllability problem, by way of

𝛾𝑁+4(𝑡) = 𝜕𝑡𝐴1(𝑡) − 𝐵1(𝑡), 𝛾𝑁+5(𝑡) = 𝜕𝑡𝐴2(𝑡) − 𝐵2(𝑡), (2.33)

where the coordinates 𝐴1, 𝐴2, 𝐵1, 𝐵2 are uniquely determined such that

ℵ𝜎 (𝑡) = 𝐴1(𝑡)
∫
T2
𝚲 d𝒙 + 𝐴2(𝑡)

∫
T2
𝚺 d𝒙,∫

T2

(
𝝃 (𝒙, 𝑡) + 𝒇 (𝒙, 𝑡)

)
d𝒙 = 𝐵1(𝑡)

∫
T2
𝚲 d𝒙 + 𝐵2(𝑡)

∫
T2
𝚺 d𝒙,

with ℵ𝜎 (𝑡) from (2.3) and 𝝃 given by

𝝃 (𝒙, 𝑡) ≔
𝑁∑︁
𝑙=1

𝛾𝑙 (𝑡)𝝑𝑙 (𝒙, 1 − 𝜎(𝑇ctrl − 𝑡)) +
𝑁+3∑︁
𝑙=𝑁+1

𝛾𝑙 (𝑡)𝝑𝑙 (𝒙).
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In light of the formulas (2.11)–(2.13) and the previously determined profiles
𝝑1, . . . , 𝝑𝑁+3, the definitions in (2.33) allow to describe 𝛾𝑁+4 and 𝛾𝑁+5 explic-
itly in terms of the controls 𝛾1, . . . , 𝛾𝑁 .

Step 4. Conclusion. Let 𝒖 ∈ C0( [0, 𝑇ctrl]; V𝑘+1)∩L2((0, 𝑇ctrl); V𝑘+2) be the unique
solution to (1.1) associated with the control force 𝝃 = 𝝃𝛾1,...,𝛾𝑁 ,𝜎. We note that, by
integrating the velocity equation of the Navier–Stokes problem (1.1), one has∫

T2
𝒖(𝒙, 𝑡) d𝒙 =

∫
T2
𝒖(𝒙, 0) d𝒙 +

∫ 𝑡

0

(∫
T2
𝝃 (𝒙, 𝑠) d𝒙 +

∫
T2

𝒇 (𝒙, 𝑠) d𝒙
)

d𝑠.

As a result, by taking the estimates (2.26) and (2.27) into account, 𝒖 is seen to
satisfy the terminal condition

∥𝒖(·, 𝑇ctrl) − 𝒖1∥𝑘+1 ≤ 𝐶0∥𝑤(·, 𝑇ctrl) − 𝑤1∥𝑘 < 𝜀,

which completes the proof of Theorem 1.1.

3 Effective construction of the control force
The yet unspecified objects 𝐾 , 𝜒, �̃�, ( �̃�𝑖)𝑖∈{1,...,𝐾}, 𝚵, (𝑡𝑙𝑎, 𝑡𝑙𝑏, 𝜏𝑙)𝑙∈{1,...,𝐾}, 𝑇

★, which
already appeared in (2.8)–(2.10), are introduced in this section. The motivations for
the choices made below will become apparent in the proof of Theorem 5.3.

3.1 Open covering by overlapping squares
Let us take any small number 𝑑 > 0 such that ω𝑑 ≔ {𝒙 ∈ ω | dist(𝒙, 𝜕ω) > 𝑑} is
non-empty. Moreover, we choose length and height parameters

0 < 𝐿1 < 𝐿2 < 2𝜋, 0 < 𝐻1 < 𝐻2 < 2𝜋

in a way that [𝐿1, 𝐿2] × [𝐻1, 𝐻2] ⊂ ω𝑑 . Subsequently, we fix a possibly large square
number 𝐾 ∈ N which satisfies 𝐾 > 1 and

𝑙𝐾 ≔
2𝜋

√
𝐾 − 1

<
1
3

min{𝐿2 − 𝐿1, 𝐻2 − 𝐻1}.

By employing the above notations, the torus T2 may be covered by overlapping
squares (O𝑖)𝑖∈{1,...,𝐾} (cf. Figure 4), each being a rigid translation of (0, 𝑙𝐾)2. For
the sake of explicitness, and in order to fix their enumeration, we assume that the
bottom left corners of O1, . . . ,O𝐾 are given by the respective points

𝒙1 = [𝑥1,1, 𝑥1,2]⊤, . . . , 𝒙𝐾 = [𝑥𝐾,1, 𝑥𝐾,2]⊤ ∈ T2,
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defined via

𝑥
𝑖+
√
𝐾 (𝑙−1),1 =

2𝜋(𝑖 − 1)
√
𝐾

, 𝑥
𝑖+
√
𝐾 (𝑙−1),2 =

2𝜋(𝑙 − 1)
√
𝐾

, 𝑖, 𝑙 = 1, . . . ,
√
𝐾.

Lastly, let a reference square O, with its bottom left corner denoted by 𝒑𝐾 , be placed
inside the rectangle [𝐿1, 𝐿2] × [𝐻1, 𝐻2] via

𝒑𝐾 ≔

(
𝐿1 + 𝐿2 − 𝑙𝐾

2
,
𝐻1 + 𝐻2 − 𝑙𝐾

2

)
, O ≔ 𝒑𝐾 + (0, 𝑙𝐾)2.

𝒑𝐾

O

Figure 4: An illustration of the chosen covering for T2 by 𝐾 = 36 overlapping squares. Areas which
overlap due to periodicity are filled with a corresponding pattern. Only a few squares are depicted.
The (red) reference square O is located in the interior of the control region and 𝒑𝐾 denotes its bottom
left corner. The (blue) dashed rectangle represents [𝐿1, 𝐿2] × [𝐻1, 𝐻2].

3.2 Partition of unity
We introduce a special partition of unity with respect to (O𝑙)𝑙∈{1,...,𝐾} arising from
rigid translations of a single cutoff function. To begin with, let 𝜇 ∈ C∞(T1; [0, 1])
have the attributes (cf. Example 3.1)

supp(𝜇) ⊂ (0, 𝑙𝐾), ∀𝑥 ∈ T1 :

√
𝐾∑︁

𝑙=1
𝜇

(
𝑥 + 2𝜋(𝑙 − 1)

√
𝐾

)
= 1 (3.1)

and
𝜇(𝑠) = 1 ⇐⇒ 𝑠 ∈

[
2𝜋

𝐾 −
√
𝐾
,

2𝜋
√
𝐾

]
. (3.2)
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Thereafter, we define the cutoff functions 𝜇, 𝜒 ∈ C∞(T2; [0, 1]) by virtue of

𝜇(𝒙) ≔ 𝜇(𝑥1)𝜇(𝑥2), 𝜒(𝒙) ≔ 𝜇(𝒙 − 𝒑𝐾), 𝒙 = [𝑥1, 𝑥2]⊤ ∈ T2. (3.3)

As a result, a partition of unity with respect to the open covering (O𝑙)𝑙∈{1,...,𝐾} is
given by the family of translations

(𝜇𝑙 ≔ 𝜇 (· − 𝒙𝑙))𝑙=1,...,𝐾 ⊂ C∞(T2; [0, 1]). (3.4)

In particular, for all 𝑙 ∈ {1, . . . , 𝐾} one has supp(𝜇𝑙) ⊂ O𝑙 while {supp(𝜇𝑙) = 1}
describes the region of O𝑙 which does not overlap with O𝑖 for 𝑖 ≠ 𝑙, and it holds

∀𝒙 ∈ T2 :
𝐾∑︁
𝑙=1

𝜇𝑙 (𝒙) = 1.

Finally, any smooth cutoff function �̃� ∈ C∞(T2;R+) with ∫T2 �̃�(𝒙) d𝒙 = 1 is selected
such that supp( �̃�) ⊂ {𝜒 = 1}, followed by assigning to each 𝑗 ∈ {1, . . . , 𝐾} one of
the two shifted versions via

�̃� 𝑗 ≔

{
�̃�↗ ≔ �̃�(· − 2𝜋√

𝐾
𝒆1 − 2𝜋√

𝐾
𝒆2) if 𝑗 is a multiple of

√
𝐾,

�̃�→ ≔ �̃�(· − 2𝜋√
𝐾
𝒆1) otherwise.

(3.5)

Example 3.1. Consider any 𝜇 ∈ C∞
0 ((−𝑙𝐾 , 𝑙𝐾); [0, 1]) obeying 𝜇(𝑠) = 0 if and only if

𝑠 ∈ [−𝑙𝐾 , 𝑙𝐾]\(0, 𝑙𝐾−1/2𝐾) and 𝜇(𝑠) = 1 if and only if 𝑠 ∈ [2𝜋/(𝐾−
√
𝐾), 𝑙𝐾−1/𝐾].

Subsequently, a reference cutoff 𝜇 ∈ C∞(T1; [0, 1]) with the properties (3.1) and
(3.2) is given by

𝜇(𝑠) = I[
0, 2𝜋
𝐾−

√
𝐾

] (𝑥)𝜇(𝑥) + I( 2𝜋
𝐾−

√
𝐾
, 2𝜋√
𝐾

) (𝑥) + I[ 2𝜋√
𝐾
,𝑙𝐾

] (𝑥) (1 − 𝜇
(
𝑥 − 2𝜋

√
𝐾

))
.

3.3 Convection strategy on the torus
Inspired by classical applications of the return method to fluid problems (cf. [9, Part 2,
Chapter 6.2]), we build a vector field along which information originating anywhere
on the torus will eventually pass through the control region. This vector field has to
be of a very specific nature, while being obtained in a constructive way. To start
with, the reference time interval [0, 1] is subdivided by the points

0 < 𝑇𝑎 = 𝑡0𝑐 < 𝑡1𝑎 < 𝑡1𝑏 < 𝑡
1
𝑐 < 𝑡

2
𝑎 < 𝑡

2
𝑏 < 𝑡

2
𝑐 < · · · < 𝑡𝐾𝑎 < 𝑡𝐾𝑏 < 𝑡

𝐾
𝑐 = 𝑇𝑏 < 1,

which are, for simplicity, chosen to be of equal distance denoted by 𝑇★ > 0, that is

𝑡𝑙𝑎 − 𝑡𝑙−1
𝑐 = 𝑡𝑙𝑐 − 𝑡𝑙𝑏 = 𝑡

𝑙
𝑏 − 𝑡

𝑙
𝑎 = 𝑇𝑎 = 1 − 𝑇𝑏 = 𝑇★, 𝑙 ∈ {1, . . . , 𝐾}.
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Moreover, the construction of localized controls in Section 5.2 will involve the
functions of time

𝜏𝑙 (𝑡) ≔ I[𝑡𝑙𝑎 ,𝑡𝑙𝑏] (𝑡)
(
𝑇𝑏 + 𝑡 − 𝑡𝑙𝑎

)
, 𝜏(𝑡) ≔

𝐾∑︁
𝑙=1

𝜏𝑙 (𝑡). (3.6)

Hereafter, a smooth profile 𝒚 ∈ C∞
0 ((0, 1);T2), which can at each time be

interpreted as a constant vector field, is constructed such that 𝒚 together with its
flow Y, obtained by solving the system of ordinary differential equations

d
d𝑡
Y (𝒙, 𝑠, 𝑡) = 𝒚(Y (𝒙, 𝑠, 𝑡), 𝑡), Y (𝒙, 𝑠, 𝑠) = 𝒙, 𝑠, 𝑡 ∈ [0, 1], (3.7)

possess the following properties:

P1) 𝒚(𝑡) = 0 for all 𝑡 ∈ [0, 𝑇𝑎] ∪ [𝑇𝑏, 1];

P2) Y (𝒙, 0, 1) = 𝒙 for all 𝒙 ∈ T2;

P3) each square O𝑙 is transported by Y into the reference square O ⊂ ω and pauses
there during the time interval [𝑡𝑙𝑎, 𝑡𝑙𝑏], that is

∀𝑙 ∈ {1, . . . , 𝐾}, ∀𝑡 ∈ [𝑡𝑙𝑎, 𝑡𝑙𝑏] : Y (O𝑙 , 0, 𝑡) = O.

Remark 3.2. As a consequence of the fact that 𝒚 does not depend on 𝒙, the flow Y

rigidly translates T2 as a whole. Therefore, the property P3 implies

∀𝑙 ∈ {1, . . . , 𝐾}, ∀𝒙 ∈ O𝑙 , ∀𝑡 ∈ [𝑡𝑙𝑎, 𝑡𝑙𝑏] : Y (𝒙, 0, 𝑡) = 𝒑𝐾 + (𝒙 − 𝒙𝑙).

Theorem 3.3. There exists 𝒚 ∈ C∞
0 ((0, 1);T2) satisfying the properties P1–P3.

Proof. The proof is based on performing a sequence of horizontal and vertical
translations of the whole torus T2, as illustrated in Figure 5. One could also use other
translations, for instance, shifts in the direction of 𝒑𝐾 − 𝒙𝑙 for each 𝑙 ∈ {1, . . . , 𝐾}
respectively. To begin with, for each 𝑖 ∈ {1, . . . , 𝐾} let ℎ𝑖 ∈ C∞

0 ((0, 𝑇★/2);R) be
any function which obeys

𝑥𝑖,1 +
∫ 𝑇★/2

0
ℎ𝑖 (𝑠) d𝑠 =

𝐿1 + 𝐿2 − 𝑙𝐾
2

.

Similarly, for each 𝑖 ∈ {1, . . . , 𝐾} take 𝑣𝑖 ∈ C∞
0 ((0, 𝑇★/2);R) such that

𝑥𝑖,2 +
∫ 𝑇★/2

0
𝑣𝑖 (𝑠) d𝑠 =

𝐻1 + 𝐻2 − 𝑙𝐾
2

.
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[𝐿1, 𝐿2]
×[𝐻1, 𝐻2]

O𝑖

O 𝑗

Õ𝑖

ω

(a) Shifting the whole torus T2 to the right such that the points
from the square O𝑖 are moved to Õ𝑖 , which is situated in the
horizontal center of [𝐿1, 𝐿2 ] × [0, 2𝜋 ].

Õ𝑖

(b) Shifting the whole torus T2 upwards in a way that the
points originating from the square Õ𝑖 are moved to the center
of [𝐿1, 𝐿2 ] × [𝐻1, 𝐻2 ].

Figure 5: The vector function 𝒚, which only depends on time, is constructed by a sequence of
horizontal and vertical shifts of the whole torus T2. In order to render the constructions smooth,
there is a scheduled pause between each shift. The gray region in the background depicts the set 𝜔
containing the support of the vorticity controls.

Based on this groundwork, we introduce the functions �̃�𝑖 ∈ C∞
0 ((0, 𝑇★);R2) and

�̂�𝑖 ∈ C∞
0 ((0, 3𝑇★);R2) via

�̃�𝑖 (𝑡) ≔
{
ℎ𝑖 (𝑡)𝒆1 if 𝑡 ∈ [0, 𝑇★/2],
𝑣𝑖 (𝑡 − 𝑇★/2)𝒆2 if 𝑡 ∈ (𝑇★/2, 𝑇★],

and respectively

�̂�𝑖 (𝑡) ≔


�̃�𝑖 (𝑡) if 𝑡 ∈ [0, 𝑇★],
0 if 𝑡 ∈ [𝑇★, 2𝑇★],
−�̃�𝑖 (𝑡 − 2𝑇★) if 𝑡 ∈ (2𝑇★, 3𝑇★] .

Finally, a spatially constant vector field 𝒚 ∈ C∞
0 ((0, 1);T2), which satisfies the

properties P1–P3, is defined as

𝒚(𝑡) ≔


0 if 𝑡 ∈ [0, 𝑇𝑎),
�̂�𝑖 (𝑡 − (3𝑖 − 2)𝑇★), if 𝑡 ∈ [(3𝑖 − 2)𝑇★, (3𝑖 + 1)𝑇★],
0 if 𝑡 ∈ (𝑇𝑏, 1).

□
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3.4 Flow maps obtained from observable families
It remains to effectively construct the flow map 𝚵, which enters the definition of 𝜂
in (2.8) through the auxilliary control 𝜂 described in (2.9). Hereto, we first select
via Theorem 3.3 a profile 𝒚 ∈ C∞

0 ((0, 1);R2), together with the corresponding
flow Y defined as the solution to the system (3.7). We then proceed by recalling
the notion of observability which has been introduced for the first time in [13] to
study ergodicity properties of randomly forced partial differential equations; see also
[17] where this concept is utilized for obtaining finite-dimensional controls that are
supported in the whole torus.

Definition 3.4. Let 𝑇 > 0 and 𝑛 ∈ N be fixed. A family (𝜙 𝑗 ) 𝑗∈{1,...,𝑛} ⊂ L2((0, 𝑇);R)
is called observable if, for each subinterval J ⊂ (0, 𝑇), for any continuous function
𝑏 ∈ C0(J;R), and for all differentiable functions (𝑎 𝑗 ) 𝑗∈{1,...,𝑛} ⊂ C1(J;R), one has
the implication

𝑏 +
𝑛∑︁
𝑗=1
𝑎 𝑗𝜙 𝑗 = 0 in L2(J;R) =⇒ ∀𝑡 ∈ J : 𝑏(𝑡) = 𝑎1(𝑡) = · · · = 𝑎𝑛 (𝑡) = 0.

Remark 3.5. As explained in [17, Section 3.3], see also [13], one can build
observable families in the sense of Definition 3.4 in an explicit way and express
them by closed formulas. For the sake of completeness, we briefly recall such
a construction. Let (𝜙 𝑗 ) 𝑗∈{1,...,𝑛} be any family of bounded measurable functions
(0, 𝑇) −→ R such that each 𝜙 𝑗 has well-defined left and right limits in the whole
interval (0, 𝑇). Next, take an arbitrary collection (D𝑖)𝑖∈{1,...,𝑛} ⊂ (0, 𝑇) of disjoint
countable sets which are dense in (0, 𝑇), and which are chosen such that 𝜙 𝑗 is
discontinuous on D 𝑗 while, at the same time, being continuous on (0, 𝑇) \D 𝑗 . Then,
one can show that (𝜙 𝑗 ) 𝑗∈{1,...,𝑛} constitutes an observable family.

Given the finite set K ⊂ Z2
∗ selected in Section 2.2, we fix now any observable

family (𝜙s
ℓ, 𝜙

c
ℓ)ℓ∈K ⊂ L2((0, 𝑇★);R) in the sense of Definition 3.4 and arbitrarily

choose a function 𝜙 ∈ C1( [0, 𝑇★];R) with the property

𝜙(𝑡) = 0 ⇐⇒ 𝑡 = 𝑇★.

On top of that, the family (𝜓s
ℓ, 𝜓

c
ℓ)ℓ∈K ⊂ W1,2((0, 𝑇★);R) of coefficients is taken as

𝜓s
ℓ (𝑡) ≔ 𝜙(𝑡)

∫ 𝑡

0
𝜙s
ℓ (𝜎) d𝜎, 𝜓c

ℓ (𝑡) ≔ 𝜙(𝑡)
∫ 𝑡

0
𝜙c
ℓ (𝜎) d𝜎, ℓ ∈ K .

Subsequently, the divergence-free profile 𝒖 ∈ W1,2((0, 1); C∞(T2;R2)) is defined by

𝒖(·, 𝑡) ≔ 𝒚(𝑡) + I[𝑇𝑏 ,1] (𝑡)𝒚
★(·, 𝑡 − 𝑇𝑏), (3.8)
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with 𝒚★ ∈ W1,2((0, 1); C∞(T2;R2)) being the “observable” vector field

𝒚★(𝒙, 𝑡) ≔
∑︁
ℓ∈K

(
𝜓s
ℓ (𝑡)𝑠ℓ (𝒙)ℓ

⊥ + 𝜓c
ℓ (𝑡)𝑐ℓ (𝒙)ℓ

⊥) , (3.9)

where ℓ⊥ ≔ [−ℓ2, ℓ1]⊤ for any ℓ = [ℓ1, ℓ2]⊤ ∈ K.

Remark 3.6. The vector field 𝒖, as described in (3.8) by means of 𝒚 and 𝒚★, serves
multiple purposes. On the one hand, during the time interval (𝑇𝑎, 𝑇𝑏), information
travels in a specific way through the control region ω when following the integral
curves of 𝒚. On the other hand, since 𝒚★ is defined using an observable family,
one can obtain finite-dimensional, but non-localized, controls for associated linear
transport equations.

Finally, keeping in mind our goal of squeezing the actions of finite-dimensional
controls into the small control region ω, we introduce the flow map

𝚵(𝒙, 𝑡) = [Φ(𝒙, 𝑡),Ψ(𝒙, 𝑡)]⊤ ≔ U (Y (𝒙, 𝑡, 0), 1, 𝜏(𝑡)) , (3.10)

where 𝜏 is the function from (3.6) and U denotes the solution to the system of
ordinary differential equations{

d
d𝑡U (𝒙, 𝑠, 𝑡) = 𝒖(U (𝒙, 𝑠, 𝑡), 𝑡),
U (𝒙, 𝑠, 𝑠) = 𝒙.

(3.11)

4 Saturation property
The collection (𝑠ℓ, 𝑐ℓ)ℓ∈Z2

∗
specified in (2.7) constitutes a complete orthogonal system

in H𝑚 for each 𝑚 ∈ N. For any given non-empty finite subset E ⊂ Z2
∗, we define a

finite-dimensional space via

H(E) ≔ span {𝑠ℓ, 𝑐ℓ | ℓ ∈ E} .

Remark 4.1. Since sin and cos are odd and even functions respectively, one has the
relation H(E) = H(−E).

Based on the above choice of E, we determine now a non-decreasing sequence
of finite subsets (E 𝑗 ) 𝑗∈N0 ⊂ Z2

∗ by taking E0 ≔ E ∪ (−E) and

E 𝑗 ≔ E 𝑗−1 ∪
{
ℓ1 + ℓ2 | ℓ1 ∈ E 𝑗−1, ℓ2 ∈ E0, ℓ1 ∦ ℓ2

}
, 𝑗 ∈ N, (4.1)

where the constraint ℓ1 ∦ ℓ2 ensures that each E 𝑗 is well-defined as a subset of Z2
∗.

The associated sequence of subspaces (H 𝑗 (E)) 𝑗∈N0 ⊂ H𝑚 is then introduced by

H 𝑗 (E) ≔ H(E 𝑗 ), 𝑗 ∈ N0.
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We provide a simple characterization of subsets E ⊂ Z2
∗ for which ∪𝑖∈N0H 𝑗 (E)

is dense in all H𝑚 spaces.

Definition 4.2. We say that a finite subset E ⊂ Z2
∗ is

a) a generator if spanZ(E) = Z2;

b) saturating if ∪𝑖∈N0H𝑖 (E) is dense in H𝑚 for each 𝑚 ∈ N.

The next two lemmas, whose proofs are obvious, are going to be used in the
proofs of Section 5.

Lemma 4.3. A finite subset E ⊂ Z2
∗ is saturating if and only if it is a generator.

In notable contrast to previous literature such as [2,3], where saturating sets have
been employed in the context of two-dimensional Navier–Stokes and Euler systems,
no condition on the length of vectors belonging to the generator is required here.
This simpler characterization of saturation is enabled by the different underlying
strategy of this article, which is based on a linear test involving vector fields that are
constructed from observable families.

Lemma 4.4. For any finite subset E ⊂ Z2
∗, any integer 𝑗 ∈ N, and any vector ℓ ∈ E 𝑗 ,

we have
𝑠ℓ = 𝑠ℓ1𝑐ℓ2 + 𝑐ℓ1𝑠ℓ2 , 𝑐ℓ = 𝑐ℓ1𝑐ℓ2 − 𝑠ℓ1𝑠ℓ2 ,

where ℓ = ℓ1 + ℓ2 with ℓ1 ∈ E 𝑗−1, ℓ2 ∈ E0, and ℓ1 ∦ ℓ2.

5 Controllability in small time via large localized
controls

In this section, the proof of Theorem 2.3 is carried out. Our strategy comprises
three steps. First, a controllability problem for a linearized inviscid system is solved
with finite-dimensional controls supported in the whole torus T2. Subsequently,
the approximate controllability for a modified linear problem is established using a
control of the form (2.10). Ultimately, hydrodynamic scaling properties are exploited
for passing to the nonlinear viscous system (2.1).

5.1 Finite-dimensional controls acting on the whole torus
We establish the approximate controllability for a transport equation driven by
H0(K)-valued controls supported within the whole torus T2, where K ⊂ Z2

∗ is the
generator that has been fixed in Section 2. As a reminder, the numbers 𝑇𝑏 ∈ (0, 1)
and 𝑇★ = 1 − 𝑇𝑏 have been defined in Section 3.3 and the vector field 𝒖 has been
introduced in Section 3.4.
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Theorem 5.1. For any given 𝑚 ∈ N, 𝑣1 ∈ H𝑚, and 𝜀 > 0, there exists a control

𝑔 ∈ L2((0, 1);H0(K))

such that the unique solution

𝑣 ∈ C0( [0, 1]; H𝑚) ∩ W1,2((0, 1); H𝑚−1)

to the linear transport problem

𝜕𝑡𝑣 + (𝒖 · ∇)𝑣 = I[𝑇𝑏 ,1] (𝑡)𝑔, 𝑣(·, 0) = 0 (5.1)

obeys at the terminal time 𝑡 = 1 the estimate

∥𝑣(·, 1) − 𝑣1∥𝑚 < 𝜀. (5.2)

Proof. The idea consists of reducing the controllability problem at hand to a version
posed on the short time interval [𝑇𝑏, 1], during which the definition of the vector
field 𝒖 in (3.8) involves an observable family. Owing to the structure of 𝒚★, as
described in (3.9), the existence of finite-dimensional controls is then accomplished
by way of combining functional analytic tools with geometric arguments.

Step 1. Reduction. During the time interval [0, 𝑇𝑏] we plug the zero control 𝑔 = 0
into (5.1). Thus, since (5.1) is a homogeneous transport equation when considered
on [0, 𝑇𝑏], the terminal condition 𝑣(𝒙, 𝑇𝑏) = 0 holds for all 𝒙 ∈ T2. During the
remaining time interval [𝑇𝑏, 1], we then seek a control �̃� ∈ L2((𝑇𝑏, 1);H0(K))
solving in T2 × (𝑇𝑏, 1) the controllability problem

𝜕𝑡𝑣 + (𝒖 · ∇)𝑣 = �̃�, 𝑣(·, 𝑇𝑏) = 0, ∥𝑣(·, 1) − 𝑣1∥𝑚 < 𝜀.

Bearing in mind the definition of 𝒖, the proof of Theorem 5.1 is reduced to the
task of finding a control �̂� ∈ L2((0, 𝑇★);H0(K)) which guarantees that the unique
solution 𝑣 : T2 × [0, 𝑇★] −→ R to the transport equation

𝜕𝑡𝑣 + (𝒚★ · ∇)𝑣 = �̂�, 𝑣(·, 0) = 0 (5.3)

obeys the terminal condition

∥𝑣(·, 𝑇★) − 𝑣1∥𝑚 < 𝜀. (5.4)

To this end, we employ a similar strategy as developed in [17, Section 3.3], thereby
relying on the fact that 𝒚★ has been constructed based on an observable family. First,
we denote by

𝑅(𝑡, 𝜏) : H𝑚 −→ H𝑚, �̃�0 ↦−→ �̃�(𝑡), 0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑇★
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the two-parameter family of resolving operators in H𝑚 for the linear problem

𝜕𝑡𝑣 + (𝒚★ · ∇)̃𝑣 = 0, �̃�(·, 𝜏) = �̃�0.

Consequentially, the resolving operator 𝐴 = 𝐴𝑇★ : L2((0, 𝑇★); H𝑚) −→ H𝑚 for (5.3)
at time 𝑡 = 𝑇★ can be represented in the form

𝐴𝑔 =

∫ 𝑇★

0
𝑅(𝑇★, 𝜏)𝑔(𝜏) d𝜏, 𝑔 ∈ L2((0, 𝑇★); H𝑚).

After denoting the orthogonal projector onto H0(K) with respect to H𝑚 as

𝑃H0 (K) : H𝑚 −→ H0(K) ⊂ H𝑚,

we introduce the control-to-state operator

𝐴1 ≔ 𝐴𝑃H0 (K) : L2((0, 𝑇★); H𝑚) −→ H𝑚 .

In order to solve the controllability problem constituted by (5.3) and (5.4) with
controls belonging to L2((0, 1);H0(K)), it suffices to demonstrate that the image of
𝐴1 is dense in H𝑚. The latter property is equivalent to

ker(𝐴∗1) = {0},

where the adjoint operator 𝐴∗1 : H𝑚 −→ L2((0, 𝑇★); H𝑚) can be expressed with the
aid of the H𝑚-adjoint 𝑅(𝑇★, 𝜏)∗ for 𝑅(𝑇★, 𝜏) as

(𝐴∗1𝑧) (𝜏) ≔ 𝑃H0 (K)𝑅(𝑇★, 𝜏)∗𝑧, 𝜏 ∈ (0, 𝑇★).

Step 2. The idea for showing ker(𝐴∗1) = {0}. Let 𝑧 ∈ ker(𝐴∗1) be arbitrarily fixed.
Then, for almost all 𝜏 ∈ [0, 𝑇★] and all 𝑔 ∈ H0(K), one has〈

𝑅(𝑇★, 𝜏)𝑔, 𝑧
〉
𝑚
=
〈
𝑃H0 (K)𝑔, 𝑅(𝑇★, 𝜏)∗𝑧

〉
𝑚
=
〈
𝑔, (𝐴∗1𝑧) (𝜏)

〉
𝑚
= 0.

In fact, because 𝜏 ↦−→ 𝑅(𝑇★, 𝜏) is continuous, one even gets〈
𝑅(𝑇★, 𝜏)𝑔, 𝑧

〉
𝑚
= 0 (5.5)

for all 𝜏 ∈ [0, 𝑇★] and 𝑔 ∈ H0(K). Consequently, taking 𝜏 = 𝑇★ in (5.5) yields

⟨𝑔, 𝑧⟩𝑚 = 0 (5.6)

for each 𝑔 ∈ H0(K). Therefore, 𝑧 is orthogonal to H0(K) in H𝑚. Since a dense
subspace of a Hilbert space has a trivial orthogonal complement, and noting that by
Lemma 4.3 the inclusion ∪𝑖∈N0H𝑖 (K) ⊂ H𝑚 is dense, it only remains to establish
orthogonality relations of the type (5.6) for all 𝑔 ∈ ∪𝑖∈N0H𝑖 (K) in order to conclude
that 𝑧 = 0.
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Given any 𝑇1 ∈ [0, 𝑇★], let us distinguish the element 𝑧1 ≔ 𝑅(𝑇★, 𝑇1)∗𝑧, which
satisfies due to (5.5) the relations

⟨𝑅(𝑇1, 𝜏)𝑔, 𝑧1⟩𝑚 =
〈
𝑅(𝑇★, 𝜏)𝑔, 𝑧

〉
𝑚
= 0 (5.7)

for all 𝜏 ∈ [0, 𝑇1] and 𝑔 ∈ H0(K). Taking 𝜏 = 𝑇1 in (5.7), we find that

⟨𝑔, 𝑧1⟩𝑚 = ⟨𝑅(𝑇1, 𝑇1)𝑔, 𝑧1⟩𝑚 = 0 (5.8)

for all 𝑔 ∈ H0(K). If the equality ⟨𝑔, 𝑧1⟩𝑚 = 0 from (5.8) would be valid for
all 𝑔 ∈ H𝑖 (K) with some 𝑖 ∈ N, then by inserting 𝑇1 = 𝑇★ into the definition
of 𝑧1, also (5.6) would hold for all 𝑔 ∈ H𝑖 (K). Accordingly, by induction over 𝑖,
we subsequently show that

⟨𝑔, 𝑧1⟩𝑚 = ⟨𝑅(𝑇1, 𝑇1)𝑔, 𝑧1⟩𝑚 = 0, 𝑔 ∈ H𝑖 (K) (5.9)

for arbitrary 𝑖 ∈ N.

Step 3. Induction base. We begin with establishing (5.9) for 𝑖 = 1. To this end,
we arbitrarily fix 𝑔 ∈ H0(K) and consider

𝑞(𝑡, 𝜏) ≔ 𝑅(𝑡 + 𝜏, 𝜏)𝑔, 𝑄(𝑡, 𝜏) ≔ 𝜕𝜏𝑞(𝑡, 𝜏), 0 ≤ 𝑡 ≤ 𝑇★ − 𝜏.

Viewing 𝑞 and 𝑄 as functions of 𝑡 ∈ [0, 𝑇★−𝜏], which take values in H𝑚 and depend
on a parameter 𝜏 ∈ [0, 𝑇★), we observe that they solve for all (𝒙, 𝑡) ∈ T2× (0, 𝑇★−𝜏)
the initial value problems
𝜕𝑡𝑞(𝒙, 𝑡, 𝜏) + (𝒚★(𝒙, 𝑡 + 𝜏) · ∇)𝑞(𝒙, 𝑡, 𝜏) = 0,
𝜕𝑡𝑄(𝒙, 𝑡, 𝜏) + (𝒚★(𝒙, 𝑡 + 𝜏) · ∇)𝑄(𝒙, 𝑡, 𝜏) + (𝜕𝑡 𝒚★(𝒙, 𝑡 + 𝜏) · ∇)𝑞(𝒙, 𝑡, 𝜏) = 0,
𝑞(𝒙, 0, 𝜏) = 𝑔,
𝑄(·, 0, 𝜏) = 0.

By integrating the H𝑚-inner product of the equation for 𝑄 with 𝑧1 from 𝑡 = 0 to
𝑡 = 𝑇1 − 𝜏, it follows that

0 = ⟨𝑄(𝒙, 𝑇1 − 𝜏, 𝜏), 𝑧1⟩𝑚 +
∫ 𝑇1−𝜏

0

〈
(𝒚★(·, 𝑡 + 𝜏) · ∇)𝑄(·, 𝑡, 𝜏), 𝑧1

〉
𝑚

d𝑡

+
∫ 𝑇1−𝜏

0

〈
(𝜕𝑡 𝒚★(·, 𝑡 + 𝜏) · ∇)𝑞(𝒙, 𝑡, 𝜏), 𝑧1

〉
𝑚

d𝑡,
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which implies

0 = ⟨𝑄(𝒙, 𝑇1 − 𝜏, 𝜏), 𝑧1⟩𝑚 +
∫ 𝑇1−𝜏

0

〈
(𝒚★(·, 𝑡 + 𝜏) · ∇)𝑄(·, 𝑡, 𝜏), 𝑧1

〉
𝑚

d𝑡

+
∫ 𝑇1

𝜏

〈
(𝜕𝑡 𝒚★(·, 𝑡) · ∇) [𝑅(𝑡, 𝜏)𝑔], 𝑧1

〉
𝑚

d𝑡.
(5.10)

Moreover, by calculating 𝜕𝜏 (𝑅(𝑡 + 𝜏, 𝜏)𝑔) using the chain rule, and evaluating the
result at 𝑡 = 𝑇1 − 𝜏, we find that

𝜕𝜏𝑅(𝑡, 𝜏)𝑔|𝑡=𝑇1
(𝒙) = 𝑄(𝒙, 𝑇1 − 𝜏, 𝜏) + (𝒚★(𝒙, 𝑇1) · ∇) [𝑅(𝑇1, 𝜏)𝑔] (𝒙). (5.11)

As a result, after taking 𝜕𝜏 in ⟨𝑅(𝑇1, 𝜏)𝑔, 𝑧1⟩𝑚 = 0 from (5.7) and plugging (5.11)
into (5.10), we get

0 =

∫ 𝑇1−𝜏

0

〈
(𝒚★(·, 𝑡 + 𝜏) · ∇)𝑄(·, 𝑡, 𝜏), 𝑧1

〉
𝑚

d𝑡

+
∫ 𝑇1

𝜏

〈
(𝜕𝑡 𝒚★(·, 𝑡) · ∇) [𝑅(𝑡, 𝜏)𝑔], 𝑧1

〉
𝑚

d𝑡 −
〈
(𝒚★(·, 𝑇1) · ∇) [𝑅(𝑇1, 𝜏)𝑔], 𝑧1

〉
𝑚
.

Differentiating the latter relation with respect to 𝜏, while invoking the definition of
the vector field 𝒚★ from (3.9), yields

𝑏(𝜏) +
∑︁
ℓ∈K

(
𝑎𝑠ℓ (𝜏)𝜙

𝑠
ℓ (𝜏) + 𝑎

𝑐
ℓ (𝜏)𝜙

𝑐
ℓ (𝜏)

)
= 0, (5.12)

where 𝑏 ∈ C0( [0, 𝑇1];R) is the function

𝑏(𝜏) ≔ 𝜕𝜏

∫ 𝑇1−𝜏

0

〈
(𝒚★(·, 𝑡 + 𝜏) · ∇)𝑄(·, 𝑡, 𝜏), 𝑧1

〉
𝑚

d𝑡

−
∑︁
ℓ∈K

∫ 𝜏

0

〈(
𝜕𝑡𝜙(𝜏)

∫ 𝑡

0

(
𝜙𝑠ℓ (𝜎)𝑠ℓℓ

⊥ + 𝜙𝑐ℓ (𝜎)𝑐ℓℓ
⊥) d𝜎 · ∇

)
𝑔, 𝑧1

〉
𝑚

d𝑡

+
∫ 𝑇1

𝜏

〈
(𝜕𝑡 𝒚★(·, 𝑡) · ∇) [𝜕𝜏𝑅(𝑡, 𝜏)𝑔], 𝑧1

〉
𝑚

d𝑡

− 𝜕𝜏
〈
(𝒚★(·, 𝑇1) · ∇) [𝑅(𝑇1, 𝜏)𝑔], 𝑧1

〉
𝑚
,

and the coefficients (𝑎𝑠ℓ, 𝑎
𝑐
ℓ)ℓ∈K ⊂ C1( [0, 𝑇★];R) are given by

𝑎𝑠ℓ (𝜏) ≔ −𝜙(𝜏)
〈
(𝑠ℓℓ⊥ · ∇)𝑔, 𝑧1

〉
𝑚
, 𝑎𝑐ℓ (𝜏) ≔ −𝜙(𝜏)

〈
(𝑐ℓℓ⊥ · ∇)𝑔, 𝑧1

〉
𝑚
.

Since the family (𝜙𝑠ℓ, 𝜙
𝑐
ℓ)ℓ∈K is observable, the relation (5.12) yields〈

(𝑠ℓℓ⊥ · ∇)𝑔, 𝑧1
〉
𝑚
=
〈
(𝑐ℓℓ⊥ · ∇)𝑔, 𝑧1

〉
𝑚
= 0, ℓ ∈ K . (5.13)

31



Now, we take an arbitrary element 𝜉 ∈ H1(K) and without loss of generality assume
that for ℓ1, ℓ2 ∈ K with ℓ1 ∦ ℓ2 one has either 𝜉 = 𝑠ℓ1+ℓ2 or 𝜉 = 𝑐ℓ1+ℓ2 . In view of
Lemma 4.4, the function 𝜉 admits one of the two representations

𝜉 = 𝑠ℓ1𝑐ℓ2 + 𝑐ℓ1𝑠ℓ2 , 𝜉 = 𝑐ℓ1𝑐ℓ2 − 𝑠ℓ1𝑠ℓ2 .

Then, by choosing 𝑔 = 𝑐ℓ1 or 𝑔 = 𝑠ℓ1 in (5.13), we obtain the relation ⟨𝜉, 𝑧⟩𝑚 = 0,
which implies (5.9) for 𝑖 = 1 due to the arbitrariness of 𝜉 ∈ H1(K).

Step 4. Induction step. With the intention of closing the induction argument, we
assume now for arbitrarily fixed 𝑖 ∈ N that

⟨𝑔, 𝑧⟩𝑚 = 0, 𝑔 ∈ H𝑖 (K). (5.14)

By analysis similar to the previous step, the statement in (5.14) leads to〈
(𝑠ℓℓ⊥ · ∇)𝑔, 𝑧1

〉
𝑚
=
〈
(𝑐ℓℓ⊥ · ∇)𝑔, 𝑧1

〉
𝑚
= 0, ℓ ∈ K, 𝑔 ∈ H𝑖 (K). (5.15)

It remains to show that 𝑧1 is orthogonal to H𝑖+1(K). To this end, let the sequence
(K 𝑗 ) 𝑗∈N0 be defined as in (4.1). Using the relations (5.15), wherein ℓ = ℓ2 ∈ K
and 𝑔 = 𝑠ℓ1 or 𝑔 = 𝑐ℓ1 with ℓ1 ∈ K𝑖 such that ℓ1 ∦ ℓ2, and applying Lemma 4.4,
we observe that 𝑧 is orthogonal to 𝑠ℓ and 𝑐ℓ with any ℓ ∈ K𝑖+1. This implies
that ⟨𝑔, 𝑧⟩𝑚 = 0 for all 𝑔 ∈ H𝑖+1(K) and completes the proof of the theorem. □

Remark 5.2. One can infer from Theorem 5.1 that, for fixed 𝜀 > 0, there exists a
bounded linear operator C𝜀 : H𝑚 −→ L2((0, 1);H0) assigning to any given target
state 𝑣1 from a bounded subset of H𝑚 a control 𝑔 ∈ L2((0, 1);H0) such that the
corresponding solution 𝑣 to (5.1) satisfies ∥𝑣(·, 1) − 𝑣1∥𝑚−1 < 𝜀. To justify this, we
introduce the resolving operator

A : H𝑚 × L2((0, 1),H0(K)) −→ C0( [0, 1]; H𝑚) ∩ W1,2((0, 1); H𝑚−1)

which associates with 𝑣0 ∈ H𝑚 and 𝑔 ∈ L2((0, 1);H0) the solution 𝑣 to the problem

𝜕𝑡𝑣 + (𝒖 · ∇)𝑣 = I[𝑇𝑏 ,1] (𝑡)𝑔, 𝑣(·, 0) = 𝑣0,

while denoting by A1 the restriction of A to the terminal time 𝑡 = 1. As a result of
Theorem 5.1, the range of the linear operator

A1(0, ·) : L2((0, 1),H0(K)) −→ H𝑚

is dense in H𝑚. Therefore, by [13, Proposition 2.6], while also referring to the proof
of Theorem 2.3 in [17], there exists a bounded linear approximate right inverse C𝜀
for A1(0, ·), which is as desired.
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5.2 Localizing the controls
As a consequence of Theorem 5.1, in what follows, we achieve the global approximate
controllability of a linear transport equation driven by localized degenerate controls.
At this point, in order to prepare for the transition to the nonlinear problem discussed
in Section 5.3, the convection in the considered transport equation has to take
place along the vector field 𝒚 constructed in Section 3.3. The underlying idea
is related to the return method (cf. [9, Part 2, Chapter 6]) in the sense that the
profile 𝒚 is nontrivial, vanishes near 𝑡 ∈ {0, 1}, and the associated flow transports
each particle through the control region. Below, 𝜂(𝜁 𝑠ℓ ,𝜁𝑐ℓ )ℓ∈K refers to the average-free
force described in (2.10) for a choice of control parameters (𝜁 𝑠ℓ , 𝜁

𝑐
ℓ )ℓ∈K .

Theorem 5.3. For any 𝑚 ∈ N, 𝜀 > 0, and 𝑣1 ∈ H𝑚, there exist control parameters

(𝜁 𝑠ℓ , 𝜁
𝑐
ℓ )ℓ∈K ⊂ L2((0, 1);R)

such that the unique function 𝑣 ∈ C0( [0, 1]; H𝑚) ∩ W1,2((0, 1); H𝑚−1) which solves
the transport equation

𝜕𝑡𝑣 + (𝒚 · ∇)𝑣 = 𝜂(𝜁 𝑠ℓ ,𝜁𝑐ℓ )ℓ∈K , 𝑣(·, 0) = 0 (5.16)

obeys at the terminal time 𝑡 = 1 the estimate

∥𝑣(·, 1) − 𝑣1∥𝑚 < 𝜀. (5.17)

Proof. With the help of Theorem 5.1, the control parameters (𝜁 𝑠ℓ , 𝜁
𝑐
ℓ )ℓ∈K are deter-

mined from a finite-dimensional control supported in the whole torus T2. Subse-
quently, by means of the method of characteristics and the particular constructions
carried out in Section 3, the action of the global force is squeezed into the possibly
small control region ω. Meanwhile, as anticipated by (5.16), convection occurs now
along the profile 𝒚 provided by Theorem 3.3.

Step 1. Determining the control parameters. By Theorem 5.1, there exists a
finite-dimensional control 𝑔 ∈ L2((0, 1);H0(K)) such that the solution

�̃� ∈ C0( [0, 1]; H𝑚) ∩ W1,2((0, 1); H𝑚−1)

to the transport equation (5.1) satisfies

∥̃𝑣(·, 1) − 𝑣1∥𝑚 < 𝜀.

As a consequence, there are uniquely determined coefficients

(𝜁 𝑠ℓ , 𝜁
𝑐
ℓ )ℓ∈K ⊂ L2((0, 1);R)
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such that 𝑔 is represented by means of the linear combination

𝑔(𝒙, 𝑡) =
∑︁
ℓ∈K

[
𝜁 𝑠ℓ (𝑡)𝑠ℓ (𝒙) + 𝜁

𝑐
ℓ (𝑡)𝑐ℓ (𝒙)

]
. (5.18)

Step 2. Analysis of characteristic curves. Let 𝑣 be the solution to (5.16)
with respect to the control parameters (𝜁 𝑠ℓ , 𝜁

𝑐
ℓ )ℓ∈K found during the previous step.

Furthermore, Y denotes the flow associated via (3.7) with the profile 𝒚 fixed in
Section 3.4. Then, the property P2 from Section 3.3, together with the method of
characteristics, gives for any 𝒙 ∈ T2 rise to the representation

𝑣(𝒙, 1) = 𝑣(Y (𝒙, 0, 1), 1) =
∫ 1

0
𝜂(𝜁 𝑠ℓ ,𝜁

𝑐
ℓ )ℓ∈K (Y (𝒙, 0, 𝑠), 𝑠) d𝑠.

We shall verify the estimate (5.17) by utilizing the known characteristic curves
associated with the transport equations (5.1) and (5.16) respectively. Hereto, we
arbitrarily fix 𝒙 ∈ T2 and define 𝒒 ≔ U (𝒙, 0, 1), where the flow U is defined in
(3.11). Inserting the partition of unity (𝜇𝑙)𝑙∈{1,...,𝐾} from (3.4) into the solution
formula for (5.1) provides

�̃�(𝒒, 1) =
∫ 1

0
I[𝑇𝑏 ,1] (𝑠)𝑔(U (𝒙, 0, 𝑠), 𝑠) d𝑠 =

∫ 1

𝑇𝑏

𝑔(U (𝒙, 0, 𝑠), 𝑠) d𝑠

=

𝐾∑︁
𝑙=1

∫ 1

𝑇𝑏

𝜇𝑙 (𝒒)𝑔(U (𝒙, 0, 𝑠), 𝑠) d𝑠.
(5.19)

In view of (3.6), and for each 𝑙 ∈ {1, . . . , 𝐾}, a change of variables yields∫ 1

𝑇𝑏

𝜇𝑙 (𝒒)𝑔(U (𝒙, 0, 𝑠), 𝑠) d𝑠

=

∫ 𝑡𝑙
𝑏

𝑡𝑙𝑎

𝜇𝑙 (𝒒)𝑔
(
U

(
𝒙, 0,

(
𝑇𝑏 + 𝑠 − 𝑡𝑙𝑎

))
,

(
𝑇𝑏 + 𝑠 − 𝑡𝑙𝑎

))
d𝑠,

=

∫ 𝑡𝑙
𝑏

𝑡𝑙𝑎

𝜇𝑙 (𝒒)𝑔 (U (𝒙, 0, 𝜏𝑙 (𝑠)) , 𝜏𝑙 (𝑠)) d𝑠.

(5.20)

By further utilizing in (5.20) the property P3 satisfied by 𝒚 and the corresponding
flow Y, while recalling the definition of 𝜒 from (3.3), one has for each 𝑙 ∈ {1, . . . , 𝐾}
that (cf. Figure 6)∫ 1

𝑇𝑏

𝜇𝑙 (𝒒)𝑔(U (𝒙, 0, 𝑠), 𝑠) d𝑠

=

∫ 𝑡𝑙
𝑏

𝑡𝑙𝑎

𝜒(Y (𝒒, 0, 𝑠))𝑔 (U (𝒙, 0, 𝜏𝑙 (𝑠)) , 𝜏𝑙 (𝑠)) d𝑠. (5.21)

34



Thus, combining the identities (5.19) and (5.21) leads to

�̃�(𝒒, 1) =
𝐾∑︁
𝑙=1

∫ 𝑡𝑙
𝑏

𝑡𝑙𝑎

𝜒(Y (𝒒, 0, 𝑠))𝑔 (U (𝒙, 0, 𝜏𝑙 (𝑠)) , 𝜏𝑙 (𝑠)) d𝑠. (5.22)

Since U (·, 𝑠, 𝑡) is for each 𝑠, 𝑡 ∈ [0, 1] a homeomorphism of T2, and by employing
(2.9), (3.10), (5.18), and (5.22), we infer that

�̃�(𝒙, 1) =
∫ 1

0
𝜂(𝜁 𝑠ℓ ,𝜁

𝑐
ℓ )ℓ∈K (Y (𝒙, 0, 𝑠), 𝑠) d𝑠 (5.23)

for all 𝒙 ∈ T2, which ensures that (5.17) holds when 𝜂 is replaced by 𝜂 in (5.16).

𝒙 𝒒 = U (𝒙, 0, 1) ∈ O𝑖 Y (𝒒, 0, 𝑡𝑖𝑎 ) ∈ O

O𝑖

O

Figure 6: A sketch of several ideas related to the identities (5.20) and (5.21), referring to Section 3.1
for the notations. In the particular example displayed here, the point 𝒒 ∈ O𝑖 is not located in the
interior of O𝑖 ∩O𝑙 for any 𝑙 ∈ {1, . . . , 𝐾} \ {𝑖}, thus the integral over [0, 1] of the force 𝑔(U (𝒙, 0, 𝑠))
can be compressed into an integral over (𝑡𝑖𝑎, 𝑡𝑖𝑏). During this short interval, the square O𝑖 has already
been moved by Y into O and the flow Y pauses. The overlapping squares at the bottom left indicate
all members of the family (O𝑙)𝑙∈{1,...,𝐾 } which intersect non-trivially with O𝑖 .

Step 3. Using an average-free control. It remains to achieve the identity (5.23)
with 𝜂 = 𝜂(𝜁 𝑠ℓ ,𝜁

𝑐
ℓ )ℓ∈K as defined in (2.10) instead of 𝜂 = 𝜂(𝜁 𝑠ℓ ,𝜁

𝑐
ℓ )ℓ∈K . At the outset,

since 𝑔 ∈ L2((0, 1);H0(K)), we recognize that∫
T2
𝑔(𝒙, 𝑡) d𝒙 = 0, for a.a. 𝑡 ∈ [0, 1] . (5.24)
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Because the vector field 𝒖 is divergence-free, we can further infer from (5.24) that
the zero average of the initial data is preserved during the evolution governed by the
transport equation (5.1), hence

∀𝑡 ∈ [0, 1] :
∫
T2
�̃�(𝒙, 𝑡) d𝒙 = 0.

Consequentially, because (5.23) is true for all 𝒙 ∈ T2, one observes that

0 =

∫
T2
�̃�(𝒛, 1) d𝒛 =

∫
T2

∫ 1

0
𝜂(Y (𝒛, 0, 𝑠), 𝑠) d𝑠 d𝒛. (5.25)

In turn, as the homeomorphism Y is measure-preserving, the relation (5.25) yields

0 =

∫ 1

0

∫
T2
𝜂(𝒛, 𝑠) d𝒛 d𝑠. (5.26)

Now, we arbitrarily fix 𝒙 ∈ T2 and select any 𝑖 ∈ {1, . . . , 𝐾} with 𝒙 ∈ O𝑖, where the
family (O𝑙)𝑙∈{1,...,𝐾} is given in Section 3.1. Due to supp( �̃�) ⊂ {𝜒 = 1}, as stated
in Section 3.2, one has either 𝒙 ∉

⋃
𝑙≠𝑖 O𝑙 or �̃�(Y (𝒙, 0, 𝑡𝑖𝑎)) = 0. Moreover, the

property P3 from Section 3.3 renders Y stationary on [𝑡𝑙𝑎, 𝑡𝑙𝑏] for each 𝑙 ∈ {1, . . . , 𝐾}.
Therefore, in the case 𝑖 ≠ 1, direct cancellations imply (cf. Remark 5.4)

−
𝐾∑︁
𝑙=1

𝑙∑︁
𝑗=1

∫ 1

0
I[𝑡𝑙𝑎 ,𝑡𝑙𝑏]

(𝑠) �̃�𝑙 (Y (𝒙, 0, 𝑠))
∫
T2
𝜂(𝒛, 𝑠 − 3( 𝑗 − 1)𝑇★) d𝒛 d𝑠

+
𝐾∑︁
𝑙=2

𝑙−1∑︁
𝑘=1

∫ 1

0
I[𝑡𝑙𝑎 ,𝑡𝑙𝑏]

(𝑠) �̃�(Y (𝒙, 0, 𝑠))
∫
T2
𝜂(𝒛, 𝑠 − 3𝑘𝑇★) d𝒛d𝑠 = 0, (5.27)

where ( �̃�𝑙)𝑙∈{1,...,𝐾} are loosely speaking the cutoff functions (cf. (3.5))

�̃�𝑙 =

{
�̃�↗ = top-right shift of �̃�, if 𝑙 is a multiple of

√
𝐾,

�̃�→ = right shift of �̃�, otherwise.

When 𝑖 = 1, as illustrated in Figure 7, we can employ (5.26) in order to infer

𝐾∑︁
𝑗=1

∫ 1

0
I[𝑡𝐾𝑎 ,𝑡𝐾𝑏 ]

(𝑠) �̃�𝐾 (Y (𝒙, 0, 𝑠))
∫
T2
𝜂(𝒛, 𝑠 − 3( 𝑗 − 1)𝑇★) d𝒛 d𝑠 = 0, (5.28)

which yields (5.27), as well. In light of (2.10), (5.23), and (5.27), we obtain

�̃�(𝒙, 1) =
∫ 1

0
𝜂(𝜁 𝑠ℓ ,𝜁

𝑐
ℓ )ℓ∈K (Y (𝒙, 0, 𝑠), 𝑠) d𝑠,

which completes the proof. □
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Remark 5.4. For the purpose of describing the intuition behind (5.27) and (5.28),
we fix any 𝑙 ∈ {1, . . . , 𝐾}. The inner region of O𝑙 that has an empty intersection
with O𝑖 for all 𝑖 ∈ {1, . . . , 𝐾} \ {𝑙} is called the “non-overlapping part” of O𝑙 . Now,
let us look at the situation where the square O𝑙 has been moved by the flow Y into
the reference square O at the time 𝑡 = 𝑡𝑙𝑎 and pauses there until 𝑡 = 𝑡𝑙

𝑏
. During this

short time interval, the contributions of ∫T2 𝜂 only influence information transported
by Y from O𝑙 . In order to define an average-free version 𝜂 of the control 𝜂, we
cannot simply subtract the latter contributions in O during [𝑡𝑙𝑎, 𝑡𝑙𝑏], as the result might
fail to be a suitable control. Instead, ∫T2 𝜂 is offset in supp( �̃�𝑙), which by definition
corresponds either to the support of �̃�↗ or the support of �̃�→, depending on whether
the square O𝑙+1 is located top-right or right of O𝑙 . However, by means of this
strategy, if 𝑙 > 1, previous average corrections from the time interval [𝑡𝑙−1

𝑎 , 𝑡𝑙−1
𝑏

] are
already transported along with the non-overlapping part of O𝑙 under Y. These are
now, that is during [𝑡𝑙𝑎, 𝑡𝑙𝑏], erased from supp( �̃�) and instead written to supp( �̃�𝑙). In
this way, the functionality of the control 𝜂 is retained. When 𝑙 = 𝐾 , all the previous
average corrections, and those made during [𝑡𝐾𝑎 , 𝑡𝐾𝑏 ], accumulate at 𝑡 = 𝑡𝐾

𝑏
on parcels

originating from the non-overlapping part of O𝐾 under the flow Y, eventually
canceling each other out in the time average taken over [0, 1].

supp(𝜒𝐾 )

supp(𝜒)

O

Y (𝒙, 0, 𝑠)

O𝐾

O1

Figure 7: A schematic illustration of the case 𝒙 ∈ O1 in (5.27). Hereto, note that �̃�𝐾 = �̃�↗ (cf. (3.5)).
Then, during the time interval [𝑡𝐾𝑎 , 𝑡𝐾𝑏 ], the information originating from the non-overlapping part
of O1 has been transported by the flow Y to the respective region containing supp( �̃�𝐾 ). The latter is
located top-right of the reference square O. Meanwhile, the information from the non-overlapping
part of O𝐾 has been moved by Y to the center region of the reference square O containing supp( �̃�).
The average corrections made during [0, 𝑡𝐾

𝑏
] accumulate in supp( �̃�) during [𝑡𝐾𝑎 , 𝑡𝐾𝑏 ].
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5.3 Passing to the nonlinear system
The approximate controllability result provided by Theorem 5.3 can now be translated
back to the nonlinear viscous Navier–Stokes system in vorticity form (2.1). To this
end, inspired by [7] and [17, Proposition 2.2], we first show how to control the
vorticity equation during a short time interval by means of large controls.
Lemma 5.5. For 𝑚 ∈ N, let any state 𝑤0 ∈ H𝑚+1, any force ℎ ∈ L2((0, 1); H𝑚−1),
and arbitrary parameters (𝜌𝑙)𝑙∈{1,...,𝑁} ⊂ L2((0, 1);R) be fixed. Moreover,

• denote by 𝑣 ∈ C0( [0, 1]; H𝑚+1) ∩ W1,2((0, 1); H𝑚) the solution to the linear
transport problem

𝜕𝑡𝑣 + (𝒚 · ∇)𝑣 = 𝜂𝜌1,...,𝜌𝑁 , 𝑣(·, 0) = 𝑤0, (5.29)

where the force 𝜂 = 𝜂𝜌1,...,𝜌𝑁 is given via (2.10) in terms of (𝜌𝑙)𝑙∈{1,...,𝑁};

• for any given 𝛿 ∈ (0, 1) and 𝑡 ∈ (0, 𝛿) consider the scaled control force

𝜂𝛿 (·, 𝑡) = 𝜂𝛿,𝜌1,...,𝜌𝑁 (·, 𝑡) ≔ 𝛿−1𝜂𝜌1,...,𝜌𝑁 (·, 𝛿−1𝑡),

together with the scaled average (cf. (2.14))

ℵ̃𝛿 (𝑡) =
∫
T2

(
𝒚𝛿 (𝑡) +𝑼𝛿 (𝑡)

)
d𝒙, 𝒚𝛿 (𝑡) ≔ 𝛿−1𝒚(𝛿−1𝑡), 𝑼𝛿 (𝑡) ≔ 𝑼(𝛿−1𝑡).

Then, one has the convergence

∥𝑆𝛿 (𝑤0, ℎ + 𝜂𝛿, ℵ̃𝛿) |𝑡=𝛿 − 𝑣(·, 1)∥𝑚 −→ 0 as 𝛿 −→ 0, (5.30)

uniformly in 𝑤0, (𝜌𝑙)𝑙∈{1,...,𝑁}, and ℎ from bounded subsets of H𝑚+1, L2((0, 1);R),
and L2((0, 1); H𝑚−1) respectively.
Proof. When 𝑤0 and (𝜌𝑙)𝑙∈{1,...,𝑁} vary in bounded subsets of H𝑚+1 and L2((0, 1);R)
respectively, the solution 𝑣 to the linear transport problem (5.29) remains in a bounded
subset of C0( [0, 1]; H𝑚+1) ∩ W1,2((0, 1); H𝑚). With the aim of emphasizing that
the convergence (5.30) will be uniform with respect to data from bounded subsets,
we fix now any 𝑀0 > 0 in a way that

𝑤0 ∈ BH𝑚+1 (0, 𝑀0) ≔
{
𝑓 ∈ H𝑚+1 | ∥ 𝑓 ∥𝑚+1 < 𝑀0

}
.

Moreover, we select 𝑤 = 𝑆𝛿 (𝑤0, ℎ + 𝜂𝛿, ℵ̃𝛿) and denote the corresponding velocity
field by 𝒖 ≔ 𝚼(𝑤, ℵ̃𝛿), where 𝑆𝛿 (·, ·, ·) is the resolving operator on the time
interval [0, 𝛿] provided by Lemma 2.1 and 𝚼(·, ·) refers to the solution operator for
the div-curl problem (2.4).

The central idea of the proof is to consider for any given 𝛿 ∈ (0, 1) the velocity
and vorticity expansions

𝑤(·, 𝑡) = 𝑣𝛿 (·, 𝑡) + 𝑟 (·, 𝑡), 𝒖 = 𝒚𝛿 + 𝑽𝛿 + 𝑹, 𝑣𝛿 (·, 𝑡) ≔ 𝑣(·, 𝛿−1𝑡), (5.31)
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where the remainder term 𝑟 : T2 × [0, 𝛿] −→ R is determined from 𝑤 and 𝑣𝛿, while
the vector fields 𝑹 and 𝑽𝛿 are defined as

𝑹 ≔ 𝚼(𝑟, 0), 𝑽𝛿 ≔ 𝚼(𝑣𝛿,𝑼𝛿).

Due to the particular choice of ℵ̃𝛿, the ansatz for 𝒖 in (5.31) is consistent with the
definitions of 𝒚𝛿, 𝑽𝛿, and 𝑹. Furthermore, the initial condition 𝑣(·, 0) = 𝑤0 implies
that 𝑟 (·, 0) = 0 in T2. Therefore, we can show (5.30) by verifying that

∥𝑟 (·, 𝛿)∥𝑚 −→ 0 as 𝛿 −→ 0. (5.32)

The convergence in (5.32) shall be demonstrated during the following steps.

Step 1. Energy estimates for the remainder. After plugging the ansatz (5.31)
and the definition of 𝑣𝛿 into the equation satisfied by 𝑆𝛿 (𝑤0, ℎ + 𝜂𝛿), which is of the
form (2.15), the remainder 𝑟 is seen to obey in T2 × (0, 𝛿) the initial value problem

𝜕𝑡𝑟 − 𝜈Δ𝑟 + ((𝒚𝛿 + 𝑽𝛿 + 𝑹) · ∇)𝑟 + (𝑹 · ∇)𝑣𝛿 = 𝜉𝛿, 𝑟 (·, 0) = 0, (5.33)

with right-hand side 𝜉𝛿 ≔ ℎ − (𝑽𝛿 · ∇)𝑣𝛿 + 𝜈Δ𝑣𝛿. In particular, for all 𝑡 ∈ [0, 𝛿] one
has the bounds

∥𝑹(·, 𝑡)∥𝑚+1 ≤ 𝐶0∥𝑟 (·, 𝑡)∥𝑚, ∥𝑽𝛿 (·, 𝑡)∥𝑚+1 ≤ 𝐶0 (∥𝑣𝛿 (·, 𝑡)∥𝑚 + |𝑼𝛿 (𝑡) |) , (5.34)

where 𝐶0 > 0 is the constant from (2.26).
We proceed by taking the L2(T2)-inner product of (5.33) with Δ𝑚𝑟 , followed by

integrating in time over the interval [0, 𝛿]. After integration by parts, while also
applying the Poincaré inequality and noting that ∇ · 𝑹 = 0, one obtains for 𝑡 ∈ (0, 𝛿)
the estimate

∥𝑟 (·, 𝑡)∥2
𝑚 + 2𝜈

∫ 𝑡

0
∥𝑟 (·, 𝑠)∥2

𝑚+1 d𝑠

≤ 𝐶
∫ 𝑡

0
∥𝜉𝛿 (·, 𝑠)∥𝑚−1∥𝑟 (·, 𝑠)∥𝑚+1 d𝑠

+ 2
∫ 𝑡

0
∥𝑹(·, 𝑠)∥𝑚+1 (∥𝑣𝛿 (·, 𝑠)∥𝑚+1∥𝑟 (·, 𝑠)∥𝑚 + ∥𝑟 (·, 𝑠)∥𝑚 ∥𝑟 (·, 𝑠)∥𝑚+1) d𝑠

+ 2
∫ 𝑡

0
∥𝒚𝛿 (𝑠) + 𝑽𝛿 (·, 𝑠)∥𝑚+1∥𝑟 (·, 𝑠)∥2

𝑚 d𝑠

= 𝐼1 + 𝐼2 + 𝐼3.

Regarding 𝐼1, integration by parts, combined with inequalities of Young and Cauchy-
Schwarz, yields for a constant 𝐶 = 𝐶 (𝜈) > 0 the estimate

𝐼1 ≤ 𝐶
∫ 𝑡

0
∥𝜉𝛿 (·, 𝑠)∥2

𝑚−1 d𝑠 + 𝜈
4

∫ 𝑡

0
∥𝑟 (·, 𝑠)∥2

𝑚+1 d𝑠,
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hence

𝐼1 ≤ 𝐶
∫ 𝑡

0

(
∥ℎ(·, 𝑠)∥2

𝑚−1 + ∥(𝑽𝛿 (·, 𝑠) · ∇)𝑣𝛿 (·, 𝑠)∥2
𝑚−1 + ∥𝜈Δ𝑣𝛿∥2

𝑚−1

)
d𝑠

+ 𝜈
4

∫ 𝑡

0
∥𝑟 (·, 𝑠)∥2

𝑚+1 d𝑠.
(5.35)

Consequently, by a change of variables in the time integrals of (5.35) and taking
into account that 𝑡 ∈ (0, 𝛿), one has the bound

𝐼1 ≤ 𝐶
∫ 𝛿

0
∥ℎ(·, 𝑠)∥2

𝑚−1 d𝑠 + 𝐶𝛿
∫ 1

0
∥(𝑽𝛿 (·, 𝛿𝑠) · ∇)𝑣(·, 𝑠)∥2

𝑚−1 d𝑠

+ 𝛿𝜈2𝐶

∫ 1

0
∥𝑣∥2

𝑚+1 d𝑠 + 𝜈
4

∫ 𝑡

0
∥𝑟 (·, 𝑠)∥2

𝑚+1 d𝑠.

Next, by utilizing Young’s inequality and the estimate for 𝑹 from (5.34), the integral
𝐼2 is bounded via

𝐼2 ≤ 2𝐶0

∫ 𝑡

0
∥𝑟 (·, 𝑠)∥𝑚 (∥𝑣𝛿 (·, 𝑠)∥𝑚+1∥𝑟 (·, 𝑠)∥𝑚 + ∥𝑟 (·, 𝑠)∥𝑚 ∥𝑟 (·, 𝑠)∥𝑚+1) d𝑠

≤ 𝐶0

∫ 𝑡

0
∥𝑣𝛿 (·, 𝑠)∥2

𝑚+1 d𝑠 + 𝜈
4

∫ 𝑡

0
∥𝑟 (·, 𝑠)∥2

𝑚+1 d𝑠 + 𝐶
∫ 𝑡

0
∥𝑟 (·, 𝑠)∥4

𝑚 d𝑠.

Furthermore, a change of variables implies∫ 𝑡

0
∥𝑣𝛿 (·, 𝑠)∥2

𝑚+1 d𝑠 ≤ 𝛿
∫ 1

0
∥𝑣(·, 𝑠)∥2

𝑚+1 d𝑠 −→ 0 as 𝛿 −→ 0.

The integral 𝐼3 shall be treated below in combination with a Grönwall argument.
As a preparation, and by denoting the constant 𝑀 ≔ sup𝑠∈[0,1] ∥𝒚(𝑠)∥0, which is
independent of 𝛿 ∈ (0, 1), we perform a change of variables in order to get

�̃�3,𝛿 (𝑡) ≔
∫ 𝑡

0
∥𝒚𝛿 (𝑠) + 𝑽𝛿 (·, 𝑠)∥𝑚+1 d𝑠

≤
∫ 1

0
(𝑀 + 𝛿𝐶0∥𝑣(·, 𝑠)∥𝑚 + 𝛿𝐶0 |𝑼(𝑠) |) d𝑠 −→ 𝑀 as 𝛿 −→ 0.

Step 2. Conclusion. Let us collect the estimates related to 𝐼1, 𝐼2, and 𝐼3 from the
previous step. By resorting to Gönwall’s inequality, for each 𝛿 ∈ (0, 1) there exists a
number 𝜀𝛿 = 𝜀𝛿 (𝑀0) > 0, which is independent of 𝑡 ∈ [0, 1] and 𝑤0 ∈ BH𝑚+1 (0, 𝑀0),
such that 𝜀𝛿 −→ 0 for 𝛿 −→ 0 and

∥𝑟 (·, 𝑡)∥2
𝑚 ≤

(
𝜀𝛿 + 𝐶

∫ 𝑡

0
∥𝑟 (·, 𝑠)∥4

𝑚 d𝑠
)

exp
(
�̃�3,𝛿 (𝑡)

)
,
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where 𝐶 > 0 is independent of 𝛿. Thus, there exists a new constant 𝐶 > 0, which is
likewise independent of 𝛿 ∈ (0, 1), 𝑡 ∈ [0, 𝛿] and 𝑤0 ∈ BH𝑚+1 (0, 𝑀0), such that

∥𝑟 (·, 𝑡)∥2
𝑚 ≤ 𝐶𝜀𝛿 + 𝐶

∫ 𝑡

0
∥𝑟 (·, 𝑠)∥4

𝑚 d𝑠 ≕ Θ(𝑡).

As a result, by comparison with the differential inequality d
d𝑡Θ ≤ 𝐶Θ2 (cf. [17,

Proposition 2.2]), we conclude (5.32) and thus arrive at (5.30). □

For showing Theorem 2.3, it remains to combine the previously established
results as follows.

Theorem 5.6. Let 𝑚 ∈ N, ℎ ∈ L2((0, 1); H𝑚−1), and 𝑤0, 𝑤1 ∈ H𝑚+1 be fixed and
denote for each 𝛿 > 0 the average

ℵ̃𝛿 (𝑡) ≔ 𝛿−1
∫
T2

𝒚(𝛿−1𝑡) d𝒙.

There are controls (𝜁 𝑠ℓ , 𝜁
𝑐
ℓ )ℓ∈K ⊂ L2((0, 1);R) such that

𝑆𝛿

(
𝑤0, ℎ + 𝛿−1𝜂(𝜁 𝑠ℓ ,𝜁

𝑐
ℓ )ℓ∈K (·, 𝛿

−1·), ℵ̃𝛿
)
|𝑡=𝛿 −→ 𝑤1 in H𝑚 as 𝛿 −→ 0,

uniformly with respect to the states 𝑤0, 𝑤1, and force ℎ from bounded subsets of
H𝑚+1 and L2((0, 1); H𝑚−1) respectively.

Proof. Let �̃� be the solution in T2 × (0, 1) to the linear homogeneous transport
equation

𝜕𝑡𝑣 + (𝒚 · ∇)̃𝑣 = 0, �̃�(·, 0) = 𝑤0.

In particular, we know that �̃�(1) = 𝑤0, as the flow Y associated with the spatially
constant vector field 𝒚 satisfies the property P2 from Section 3.3. Now, we fix any
𝜀 > 0 and apply Theorem 5.3 with the final state �̂�1 ≔ 𝑤1 − 𝑤0, in order to obtain
controls (𝜁 𝑠ℓ , 𝜁

𝑐
ℓ )ℓ∈K ⊂ L2((0, 1);R) such that the corresponding solution

�̂� ∈ C0( [0, 1]; H𝑚+1) ∩ W1,2((0, 1); H𝑚)

to the transport equation (5.16) obeys

∥̂𝑣(·, 1) − �̂�1∥𝑚+1 < 𝜀.

Accordingly, the superposition 𝑣 ≔ �̃� + �̂� solves an initial value problem of the type
(5.29) with right-hand side 𝜂(𝜁 𝑠ℓ ,𝜁𝑐ℓ )ℓ∈K and fulfills the terminal condition

∥𝑣(·, 1) − 𝑤1∥𝑚+1 < 𝜀.

Resorting to Lemma 5.5 provides for sufficiently small 𝛿 > 0 the estimate

∥𝑆𝛿
(
𝑤0, ℎ + 𝛿−1𝜂(𝜁 𝑠ℓ ,𝜁

𝑐
ℓ )ℓ∈K (·, 𝛿

−1·), ℵ̃𝛿
)
|𝑡=𝛿 − 𝑤1∥𝑚 < 𝜀.

41



As explained in Remark 5.2, the family (𝜁 𝑠ℓ , 𝜁
𝑐
ℓ )ℓ∈K can be recovered from the

initial and target states by means of a continuous linear operator. Hence, the
controls (𝜁 𝑠ℓ , 𝜁

𝑐
ℓ )ℓ∈K remain in a bounded subset of L2((0, 1);R) when 𝑤0 and 𝑤1

vary in a bounded subset of H𝑚+1. Consequently, Lemma 5.5 allows choosing 𝛿
uniformly with respect to 𝑤0, 𝑤1 and ℎ from respective bounded subsets of H𝑚+1

and L2((0, 1); H𝑚−1). □
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A Curl-free vector fields supported near smooth cuts
The following theorem is likely known. As we could not locate the desired statement
in the literature, the details are here provided in form of explicit constructions.

Theorem A.1. Let Ω ⊂ T2 be a subdomain containing smooth cuts C1, C2 ⊂ Ω such
that T2 \ (C1 ∪ C2) is simply-connected. There exist 𝚲,𝚺 ∈ C∞(T2;R2) satisfying

R2 = spanR

{∫
T2
𝚲 d𝒙,

∫
T2
𝚺 d𝒙

}
, ∇ ∧ 𝚲 = ∇ ∧ 𝚺 = 0, supp(𝚲) ∪ supp(𝚺) ⊂ Ω.

S1

S1
S2

S3

S4

S5
S6

Figure 8: An illustration of the cut C1. The displayed tubular neighborhood of C1 comprises six
sections S1, . . . , S6 such that C1 is for 𝑘 ∈ {1, 2, 3} a graph over the 𝑥1-axis in S2𝑘 and a graph over
the 𝑥2-axis in S2𝑘−1. Near the internal section boundaries, the curve has the slope 1 or −1.

Proof. Since Ω is open, we may re-choose the smooth cuts (C𝑖)𝑖∈{1,2} in a way that
T2 \ (C1 ∪ C2) is simply-connected and the following properties hold.

• The cut C1 equals the straight line 𝑥1 = 𝑐1 in T1 × ([0, 𝑟1] \ (𝑟1/3, 2𝑟1/3)), for
some constant 𝑐1 ∈ T1 and small 𝑟1 > 0. Similarly, the cut C2 equals the line
𝑥2 = 𝑐2 in ( [0, 𝑟2] \ (𝑟2/3, 2𝑟2/3)) × T1 for some 𝑐2 ∈ T1 and small 𝑟2 > 0.

• There exists a tubular neighborhood N(C𝑖) =
⋃𝑙𝑖
𝑘=1 S𝑘 (C𝑖) of C𝑖 with disjoint

sections S1(C𝑖), . . . S𝑙𝑖 (C𝑖), in a way that C𝑖 is in each S2𝑘+1−𝑖 (C𝑖) a graph
over the 𝑥1-axis and in S2𝑘−2+𝑖 (C𝑖) a graph over the 𝑥2-axis.

• The intersection R𝑙,𝑘 (C𝑖) ≔ 𝜕S𝑙 (C𝑖) ∩ 𝜕S𝑘 (C𝑖) of two adjacent sections S𝑙 (C𝑖)
and S𝑘 (C𝑖) is a single line segment with slope either 1 or −1. In the vicinity of
the square with diagonal R𝑙,𝑘 (C𝑖), the curve C𝑖 equals a straight line segment
L𝑙,𝑘 (C𝑖) ⊂ C𝑖, with slope either −1 or 1, such that the line R𝑙,𝑘 (C𝑖) passes
transversely through L𝑙,𝑘 (C𝑖).
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For the sake of a concise presentation, we assume that C1 is the curve displayed in
Figure 8 and only construct the vector field 𝚲. The vector field 𝚺 can be built in the
same manner. In particular, that 𝚲 and 𝚺 have linearly independent averages will
turn out as a generic property. Our treatment of the example in Figure 8 provides
all the building blocks required for considering any general region Ω meeting the
hypotheses of Theorem A.1.

Step 1. Constructions. Since we consider here only the curve C1, let us fix for
each 𝑘 ∈ {1, . . . , 𝑙1 = 6} the names

N = N(C1), S𝑘 = S𝑘 (C1).

Then, by further reducing the diameter of the tube N if necessary, we select
six smooth functions υ̃𝑘 , υ̂𝑘 , : T1 −→ R−, 𝑘 ∈ {1, 2, 3}, having the below listed
attributes.

• In a neighborhood N2𝑘−1 of the section S2𝑘−1, satisfying S2𝑘−1 ⊂ N2𝑘−1, it
holds that 𝑥1 + υ̃𝑘 (𝑥2) = 0 if and only if (𝑥1, 𝑥2) ∈ C1. When (𝑥1, 𝑥2) ∈ N2𝑘−1
is located right to C1, then 𝑥1 + υ̃𝑘 (𝑥2) > 0. If (𝑥1, 𝑥2) ∈ N2𝑘−1 is located left
to C1, then 𝑥1 + υ̃𝑘 (𝑥2) < 0.

• In a neighborhood N2𝑘 of section S2𝑘 , satisfying 𝑆2𝑘 ⊂ N2𝑘 , it holds that
𝑥2 + υ̂𝑘 (𝑥1) = 0 if and only if (𝑥1, 𝑥2) ∈ C1. When (𝑥1, 𝑥2) ∈ N2𝑘 is located
above C1, then 𝑥2 + υ̂𝑘 (𝑥1) > 0. If (𝑥1, 𝑥2) ∈ N2𝑘 is located below C1, then
𝑥2 + υ̂𝑘 (𝑥1) < 0.

Furthermore, for a sufficiently small number 𝑙 ∈ (0, dist(C1, 𝜕Ω)), which will be
determined later, we choose a cutoff 𝛽 ∈ C∞(T1;R+) obeying

supp(𝛽) ⊂ (−𝑙/2, 𝑙/2), 𝛽(0) > 0. (A.1)

Let us introduce the four main building blocks. Namely, for any general func-
tion υ : T1 −→ R− and 𝒙 = [𝑥1, 𝑥2]⊤ ∈ T2, we define

�̃�
υ,±(𝒙) ≔

[
±𝛽(±𝑥1 ± υ(𝑥2))

±𝛽(±𝑥1 ± υ(𝑥2)) dυ
d𝑠 (𝑥2)

]
, �̂�

υ,±
(𝒙) ≔

[
±𝛽(±𝑥2 ± υ(𝑥1)) dυ

d𝑠 (𝑥1)
±𝛽(±𝑥2 ± υ(𝑥1))

]
.

Then, we build 𝚲 by gluing the previously introduced functions in a suitable way,
resulting in the explicit formula

𝚲(𝑥1, 𝑥2) ≔


�̃�𝑘 (𝑥1, 𝑥2) if (𝑥1, 𝑥2) ∈ S2𝑘−1,

�̂�𝑘 (𝑥1, 𝑥2) if (𝑥1, 𝑥2) ∈ S2𝑘 ,

0 otherwise,

where the smooth vector fields

(�̃�𝑘 : N2𝑘−1 −→ T2)𝑘∈{1,2,3}, (�̂�𝑘 : N2𝑘 −→ T2)𝑘∈{1,2,3}

45



are given by

�̃�1(𝒙) = �̃�
υ̃1,+

, �̃�2(𝒙) = �̃�
υ̃2,+

, �̃�3(𝒙) = �̃�
υ̃3,−

,

�̂�1(𝒙) = �̂�
υ̂1,+

, �̂�2(𝒙) = �̂�
υ̂2,−

, �̂�3(𝒙) = �̂�
υ̂3,−

.

The small parameter 𝑙 > 0 is fixed in a way that �̃�𝑘 and �̂�𝑘 are for each 𝑘 ∈ {1, 2, 3}
supported in a neighborhood of C1 which is sufficiently thin to ensure that 𝚲 is a
well-defined, smooth, and curl-free vector field obeying supp(𝚲) ⊂ Ω.

Step 2. Checking the average. It remains to study the average of 𝚲 = [Λ1,Λ2]⊤.
To this end, we write U ≔ T1 × (0, 𝑟1) and decompose∫

T2
𝚲(𝒙) d𝒙 =

∫
U
𝚲(𝒙) d𝒙 +

∫
T2\U

𝚲(𝒙) d𝒙.

Due to (A.1) and Fubini’s theorem, or alternatively by virtue of the Divergence
Theorem, we arrive at ∫

U
Λ1(𝒙) d𝒙 > 0,

∫
U
Λ2(𝒙) d𝒙 = 0.

Therefore, by slightly perturbing C1 in T1 × (𝑟1/3, 2𝑟1/3), one can change the value
of ∫T2 Λ1(𝒙) d𝒙 without affecting ∫T2 Λ2(𝒙) d𝒙. The vector field 𝚺 = [Σ1, Σ2]⊤
is then obtained by analogous constructions, but now along the smooth cut C2.
Therefore, one can modify ∫T2 Σ2(𝒙) d𝒙 in (𝑟2/3, 2𝑟2/3) × T1 without impacting the
value of the integral ∫T2 Σ1(𝒙) d𝒙. In conclusion, we can first construct candidates
for 𝚲 and 𝚺, followed by performing slight perturbations, if necessary, so that their
averages are rendered linearly independent. □
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